


High Voltage, High Gain BIMOSFET™ Monolithic Bipolar MOS Transistor

IXBA16N170AHV IXBT16N170AHV

 $V_{CES} = 1700V$ $I_{CES} = 16A$

 $V_{CE(sat)} \le 6.0V$

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _c = 25°C to 150°C	1700	V	
V _{CGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GE} = 1M\Omega$	1700	V	
V _{GES}	Continuous	± 20	V	
V _{GEM}	Transient	± 30	V	
I _{C25} I _{C90}	$T_{c} = 25^{\circ}C$ $T_{c} = 90^{\circ}C$ $T_{c} = 25^{\circ}C, 1ms$	16 10 40	A A A	
SSOA (RBSOA)	$V_{GE} = 15V$, $T_{VJ} = 125^{\circ}C$, $R_{G} = 33\Omega$ Clamped Inductive Load	I _{CM} = 40 1350	A V	
t _{sc} (SCSOA)	$V_{GE} = 15V$, $V_{CE} = 1200V$, $T_{J} = 125^{\circ}C$ $R_{G} = 33\Omega$, Non Repetitive	10	μs	
P _c	T _c = 25°C	150	W	
T		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L T _{SOLD}	Maximum Lead Temperature for Solderin Plastic Body for 10s	g 300 260	°C °C	
F _c	Mounting Force (TO-263)	1065 / 2214.6	N/lb	
Weight	TO-263 TO-268	2.5 4.0	g g	

TO-268 Symbol Test Conditions (T _J = 25°C Unless Otherwise Specified)		4.0			<u>g</u>
		Chai Min.	Values Max.		
BV _{CES}	$I_{c} = 250 \mu A, V_{ge} = 0 V$	1700			V
V _{GE(th)}	$I_{C} = 250\mu A, V_{CE} = V_{GE}$	2.5		5.5	V
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}, V_{GE} = 0V$	T _J = 125°C		50 1.5	μA mA
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{\rm C}=10A,V_{\rm GE}=15V,{\rm Note}1$			6.0	V
		$T_J = 125^{\circ}C$	5.0		V

TO-268HV (IXBT)

G = Gate C = Collector E = Emitter Tab = Collector

Features

- High Voltage Package
- High Blocking Voltage
- Anti-Parallel Diode
- Low Conduction Losses

Advantages

- Low Gate Drive Requirement
- High Power Density

Applications:

- Switch-Mode and Resonant-Mode Power Supplies
- Uninterruptible Power Supplies (UPS)
- Laser Generators
- Capacitor Discharge Circuits
- AC Switches

		teristic V	alues			
(T _J = 25°C Unless Otherwise Specified)		Min.	Тур.	Max.		
g _{fs}		$I_{\rm C} = 10A, V_{\rm CE} = 10V, \text{ Note 1}$	8.0	12.5		S
C _{ies})			1400		pF
C _{oes}	}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		90		pF
C _{res}	J			31		pF
$Q_{g(on)}$)			65		nC
\mathbf{Q}_{ge}	}	$I_{\rm C} = 10$ A, $V_{\rm GE} = 15$ V, $V_{\rm CE} = 0.5 \bullet V_{\rm CES}$		13		nC
Q _{gc}	J			22		nC
t _{d(on)})	Inductive load, T ₁ = 25°C		15		ns
t _{ri}		$I_{\rm C} = 10A$, $V_{\rm GE} = 15V$		25		ns
$\mathbf{t}_{d(off)}$	}	$V_{CE} = 0.8 \cdot V_{CES}, R_G = 10\Omega$		160	250	ns
t _{fi}		Note 2		50	100	ns
E _{off}	<u> </u>	Note 2		1.2	2.5	mJ
$\mathbf{t}_{d(on)}$)			15		ns
t _{ri}		Inductive load, T _J = 125°C		28		ns
E _{on}	\	$I_{\rm C} = 10A, \ V_{\rm GE} = 15V$		2.0		mJ
$\mathbf{t}_{d(off)}$		$V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 10\Omega$		220		ns
t _{fi}		Note 2		150		ns
E _{off}				2.6		mJ
R_{thJC}					0.83	°C/W

TO-263HV Outline Final Pin: 1 - Gate 2 - Emitter 3 - Collector

SYM	INCHES		MILLIMETER		
SIM	MIN	MAX	MIN	MAX	
Α	.170	.185	4.30	4.70	
A1	.000	.008	0.00	0.20	
A2	.091	.098	2.30	2.50	
Ь	.028	.035	0.70	0.90	
b2	.046	.054	1.18	1.38	
С	.018	.024	0.45	0.60	
C2	.049	.055	1.25	1.40	
D	.354	.370	9.00	9.40	
D1	.311	.327	7.90	8.30	
E	.386	.402	9.80	10.20	
E1	.307	.323	7.80	8.20	
e1	.200	BSC	5.08	BSC	
(e2)	.163	.174	4.13	4.43	
Н	.591	.614	15.00	15.60	
L	.079	.102	2.00	2.60	
L1	.039	.055	1.00	1.40	
L3	.010	BSC	0.254 BSC		
(L4)	.071	.087	1.80	2.20	

Reverse Diode

•	ool Test Conditions Chara 25°C Unless Otherwise Specified) Min.	acteristic ' Typ.	Values Max.	
V _F	$I_F = 10A$, $V_{GE} = 0V$		5.0	V
t _{rr}	$I_F = 10A, V_{GE} = 0V, -di_F/dt = 50A/\mu s$	360		ns
I _{RM}	$\int V_{R} = 100 V, V_{GE} = 0 V$	10		Α

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher V_{CE} (clamp), T_J or R_g .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-268HV Outline 1 - Gate 2 - Emitter 3 - Collector PECOMMENDED MINIMUM FOOT PRINT INCHES MILLIMETER SYM MIN MAX MAX 5.10 MIN .193 4.90 A1 A2 b 114 106 0.02 .045 .016 1.45 543 .476 11.80 465 D3 114 126 2.90 624 .524 .215 .736 Н 752 18.70 .039 .045 1.00 150

IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.

