
#### **Property of LITE-ON Only**

#### Features

- \* High Luminous intensity output.
- \* Low power consumption.
- \* High efficiency.
- \* Wide Viewing Angle
  - Major Axis 70° / Minor Axis 35°
- \* Versatile mounting on P.C. board or panel.
- \* I.C. Compatible/low current requirements.

#### **Package Dimensions**



| Part No.  | Lens        | Source Color      |
|-----------|-------------|-------------------|
| LTL5V3SRK | Water Clear | AllnGaP Super Red |

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is  $\pm 0.25$  mm(.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

| Part No. : LTL5V3SRK Page : | 1 | of | 8 |
|-----------------------------|---|----|---|
|-----------------------------|---|----|---|

#### Property of LITE-ON Only

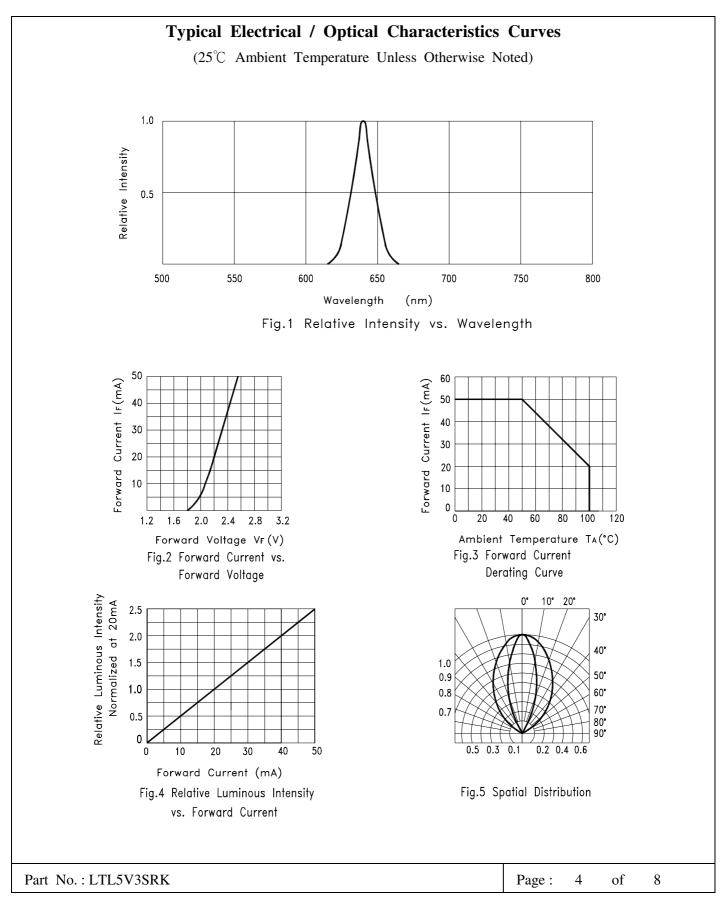
| Parameter                                                    | Maximum Rating                       | Unit  |
|--------------------------------------------------------------|--------------------------------------|-------|
| Power Dissipation                                            | 130                                  | mW    |
| Peak Forward Current<br>(1/10 Duty Cycle, 0.1ms Pulse Width) | 100                                  | mA    |
| Continuous Forward Current                                   | 50                                   | mA    |
| Derating Linear From 50°C                                    | 0.6                                  | mA/°C |
| Reverse Voltage                                              | 5                                    | V     |
| Operating Temperature Range                                  | $-40^{\circ}$ C to $+ 100^{\circ}$ C |       |
| Storage Temperature Range                                    | $-55^{\circ}$ C to $+ 100^{\circ}$ C |       |
| Lead Soldering Temperature<br>[1.6mm(.063") From Body]       | $260^{\circ}$ C for 5 Seconds        |       |

| Part No. : LTL5V3SRK | Page : | 2 | of |
|----------------------|--------|---|----|
|----------------------|--------|---|----|

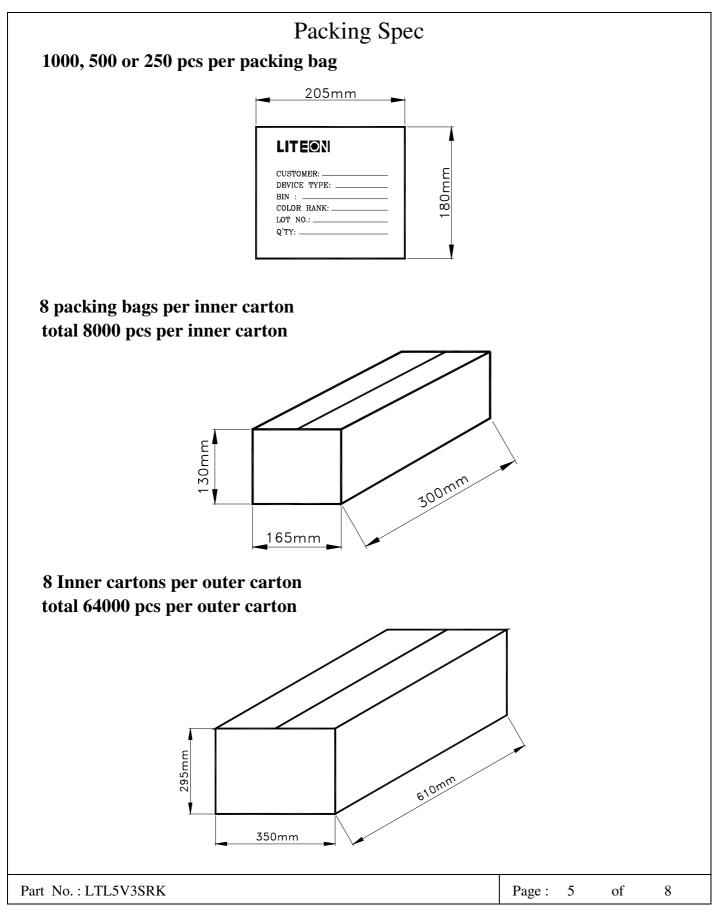
8

#### **Property of LITE-ON Only**

| Parameter                | Symbol     | Min. | Тур.    | Max. | Unit | Test Condition                    |
|--------------------------|------------|------|---------|------|------|-----------------------------------|
| Luminous Intensity       | Iv         | 680  | 1500    |      | mcd  | I <sub>F</sub> = 20mA<br>Note 1,5 |
| Viewing Angle            | 2	heta 1/2 |      | 70 / 35 |      | deg  | Note 2 (Fig.5)                    |
| Peak Emission Wavelength | λp         |      | 639     |      | nm   | Measurement<br>@Peak (Fig.1)      |
| Dominant Wavelength      | λd         |      | 630     |      | nm   | Note 4                            |
| Spectral Line Half-Width | Δλ         |      | 17      |      | nm   |                                   |
| Forward Voltage          | VF         |      | 2.2     | 2.6  | V    | $I_F = 20 mA$                     |
| Reverse Current          | IR         |      |         | 100  | μA   | $V_R = 5V$                        |
| Capacitance              | С          |      | 40      |      | pF   | $V_F = 0$ , $f = 1MHz$            |


- NOTE: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
  - 2.  $\theta_{1/2}$  is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
  - 3. Iv classification code is marked on each packing bag.
  - 4. The dominant wavelength,  $\lambda$  d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
  - 5. The Iv guarantee should be added  $\pm 15\%$  tolerance.

#### Part No.: LTL5V3SRK


Page: 3 of 8

BNS-OD-C131/A4

Property of LITE-ON Only



Property of LITE-ON Only



#### Property of LITE-ON Only

| Luminous | Luminous Intensity Unit : mcd @20mA |      |  |  |  |
|----------|-------------------------------------|------|--|--|--|
| Bin Code | Min.                                | Max. |  |  |  |
| N        | 680                                 | 880  |  |  |  |
| Р        | 880                                 | 1150 |  |  |  |
| Q        | 1150                                | 1500 |  |  |  |
| R        | 1500                                | 1900 |  |  |  |
| S        | 1900                                | 2500 |  |  |  |
| Т        | 2500                                | 3200 |  |  |  |

#### **Bin Code List For Reference**

| Dominant Wavelength Unit : nm @20mA |       |       |  |  |
|-------------------------------------|-------|-------|--|--|
| Bin Code                            | Min.  | Max.  |  |  |
| H029                                | 621.0 | 625.0 |  |  |
| Н030                                | 625.0 | 629.0 |  |  |
| H031                                | 629.0 | 633.0 |  |  |
| H032                                | 633.0 | 637.0 |  |  |

8

#### Property of LITE-ON Only

#### CAUTIONS

#### 1. Application limitation

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household application.) Consult Liteon's sales in advance for information on application in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as airplanes, automobiles, traffic control equipment, life support system and safety devices).

#### 2. Storage

After being shipped from Liteon the LEDs should be kept at 30°C or less and 70%RH or less. The LEDs should be used within 3 months. They can be stored for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material. Please avoid rapid transitions in ambient temperature in high humidity environments where condensation may occur.

#### 3. Cleaning

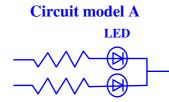
Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED.

#### 4. Forming & Mounting

When forming a lead, the leads should be bent at a point at least 3mm from the base of epoxy bulb. Do not use the base of the leadframe as a fulcrum during forming. Lead forming must be done before soldering at normal temperature. When mounted through hole type LED lamp, avoid the occurrence of residual mechanical stress due to clinching as figure shown here.

#### 5. Soldering

When soldering, leave a minimum of 2mm clearance from the resin to the soldering point. Dipping the resin into the solder must be avoided.


Do not apply any stress to the lead frame during soldering while the LED is at high temperature.

Recommended soldering condition

| Soldering iron                |                                              | Wave soldering                                             |                                                          |
|-------------------------------|----------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|
| Temperature<br>Soldering time | 300°C Max.<br>3 sec. Max.<br>(one time only) | Pre-heat<br>Pre-heat time<br>Solder wave<br>Soldering time | 100°C Max.<br>60 sec. Max.<br>260°C Max.<br>10 sec. Max. |

#### 6. Drive Method

LED is a current operated device, and therefore, requires some kind of current limiting incorporated into the drive circuit. This current limiting typically takes the form of a current limiter resistor placed in series with the LED. Consider worst case voltage variations that could occur across the current limiting resistor. The forward current should not be allowed to change by more than 40% of its desired value.





LED

(A) Recommended circuit.

(B) The difference of brightness between LEDs could be found due to the Vf-If characteristics of LED

Part No.: LTL5V3SRKPage:7of8

#### Property of LITE-ON Only

#### 7. ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti- electrostatic glove is recommended when handling these LED. All devices, equipment and machinery must be properly grounded.

#### 8. Reliability Test

| Classification                       | Test Item                                         | Test Condition                                                                                               | Referance Standard                                                                                       |
|--------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                      | Operation Life                                    | Ta= Under Room Temperature As<br>Per Data Sheet Maximum Rating<br>*Test Time= 1000HRS (-24HRS,+72HRS)        | MIL-STD-750D:1026 (1995)<br>MIL-STD-883D:1005 (1991)<br>JIS C 7021:B-1 (1982)                            |
|                                      | High Temperature<br>High Humidity<br>Storage      | Ta= $65\pm5^{\circ}$ C<br>RH= 90 ~ 95%<br>Test Time= 240HRS $\pm$ 2HRS                                       | MIL-STD-202F: 103B(1980)<br>JIS C 7021 : B-11(1982)                                                      |
| Endurance<br>Test                    | High Temperature<br>High Humidity<br>Reverse BIAS | Ta= $65\pm5^{\circ}$ C<br>RH= 90 ~ 95%<br>VR=5V<br>Test Time = 500HRS (-24HRS, +48HRS)                       | JIS C 7021 : B-11(1982)                                                                                  |
| High Temperature<br>Storage          | Ta= 105±5℃<br>*Test Time= 1000HRS (-24HRS,+72HRS) | MIL-STD-883D:1008 (1991)<br>JIS C 7021:B-10 (1982)                                                           |                                                                                                          |
|                                      | Low Temperature<br>Storage                        | Ta= -55±5°C<br>*Test Time=1000HRS (-24HRS,+72HRS)                                                            | JIS C 7021:B-12 (1982)                                                                                   |
|                                      | Temperature<br>Cycling                            | $105^{\circ}C \sim 25^{\circ}C \sim -55^{\circ}C \sim 25^{\circ}C$<br>30mins 5mins 30mins 5mins<br>10 Cycles | MIL-STD-202F:107D (1980)<br>MIL-STD-750D:1051(1995)<br>MIL-STD-883D:1010 (1991)<br>JIS C 7021: A-4(1982) |
| Environmental<br>Test<br>Solo<br>Res | Thermal<br>Shock                                  | $105 \pm 5^{\circ} C \sim -55^{\circ} C \pm 5^{\circ} C$<br>10mins 10mins<br>10 Cycles                       | MIL-STD-202F:107D(1980)<br>MIL-STD-750D:1051(1995)<br>MIL-STD-883D:1011 (1991)                           |
|                                      | Solder<br>Resistance                              | T.sol= $260 \pm 5^{\circ}$ C<br>Dwell Time= $10 \pm 1$ secs                                                  | MIL-STD-202F:210A(1980)<br>MIL-STD-750D:2031(1995)<br>JIS C 7021: A-1(1982)                              |
|                                      | Solderability                                     | T.sol= $230 \pm 5^{\circ}$ C<br>Dwell Time= $5 \pm 1$ secs                                                   | MIL-STD-202F:208D(1980)<br>MIL-STD-750D:2026(1995)<br>MIL-STD-883D:2003(1991)<br>JIS C 7021: A-2(1982)   |

#### 9. Others

The appearance and specifications of the product may be modified for improvement without notice.