

BUL128D-B

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALES TYPE
- n NPN TRANSISTOR
- n HIGH VOLTAGE CAPABILITY
- n LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- n VERY HIGH SWITCHING SPEED
- n INTEGRATED ANTIPARALLEL
- COLLECTOR- EMITTER DIODE

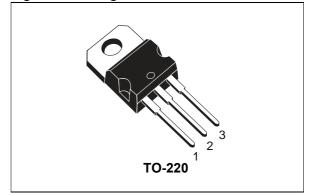
APPLICATIONS

- ELECTRONIC BALLAST FOR FLUORESCENT LIGHTING
- FLYBACK AND FORWARD SINGLE TRANSISTOR LOW POWER CONVERTERS

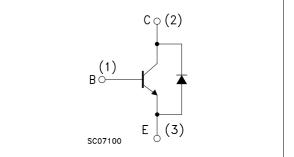
DESCRIPTION

The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The device is designed for use in lighting applications and low cost switch-mode power supplies.


Table 1: Order Codes

Part Number	Marking	Package	Packaging	
BUL128D-B	BUL128D-B	TO-220	Tube	


Table 2: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	700	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	400	V
V_{EBO}	Emitter-Base Voltage	V _{(BR)EBO}	V
	$(I_{C}= 0, I_{B}= 2 \text{ A}, t_{p} < 10 \mu\text{s}, T_{J} = 150 ^{\circ}\text{C})$		
Ι _C	Collector Current	4	Α
I _{CM}	Collector Peak Current (t _p < 5ms)	8	А
Ι _Β	Base Current	2	А
I _{BM}	Base Peak Current (t _p < 5ms)	4	Α
ebruary 20	05	Rev. 2	1/

Figure 1: Package

Figure 2: Internal Schematic Diagram

Symbol	Parameter	Value	Unit
P _{tot}	Total Dissipation at T _C = 25 °C	70	W
T _{stg}	Storage Temperature	-65 to 150	°C
Τ _J	Max. Operating Junction Temperature	150	°C

Table 3: Thermal Data

R _{thj-case}	Thermal Resistance Junction-Case	Max	1.78	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	62.5	°C/W

Table 4: Electrical Characteristics (T_{case} = 25 ^oC unless otherwise specified)

Symbol Parameter		Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current	V _{CE} = 700 V				100	μA
	(V _{BE} = 0 V)	V _{CE} =700 V	T _j = 125 ^o C			500	μA
I _{CEO}	Collector Cut-off Current	V _{CE} = 400 V				250	μA
	(I _B = 0)						
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = 10 mA		9		18	V
	$(I_{\rm C}=0)$						
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	I _C = 100 mA	L = 25 mH	400			V
	$(I_{B} = 0)$						
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 0.5 A	I _B = 0.1 A			0.7	V
		I _C = 1 A	I _B = 0.2 A			1	V
		I _C = 2.5 A	I _B = 0.5 A			1.5	V
		I _C = 4 A	I _B = 1 A		0.5		V
	Base-Emitter Saturation	I _C = 0.5 A	I _B = 0.1 A			1.1	V
	Voltage	I _C = 1 A	I _B = 0.2 A			1.2	V
		I _C = 2.5 A	I _B = 0.5 A			1.3	V
h _{FE} *	DC Current Gain	I _C = 10 mA	V _{CE} = 5 V	10			
		I _C = 2 A	V _{CE} = 5 V	12		32	
	RESISTIVE LOAD	V _{CC} =200 V	I _C = 2 A				
t _s	Storage Time	I _{B1} = 0.4 A	$V_{BE(off)}$ = -5 V		0.6		μs
t _f	Fall Time	R_{BB} = 0 Ω	L = 200 µH		0.1		μs
		(see figure 15)					
	INDUCTIVE LOAD	V _{CC} =250 V	I _C = 2 A				
t _s	Storage Time	I _{B1} = 0.4 A	I _{B2} = -0.4 A	2		2.9	μs
t _f	Fall Time	Tp = 30 µs	(see figure 14)		0.2		μs

* Pulsed: Pulsed duration = 300 μ s, duty cycle \leq 1.5 %.

.

Figure 3: Safe Operating Area

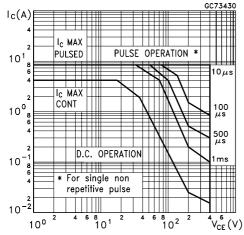
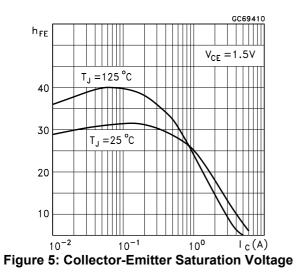



Figure 4: DC Current Gain

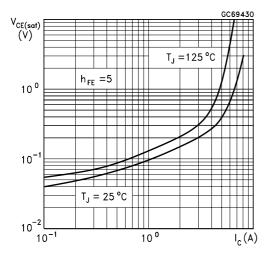


Figure 6: Derating Current

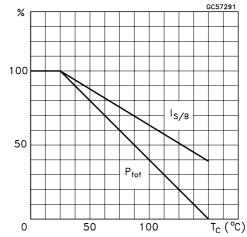
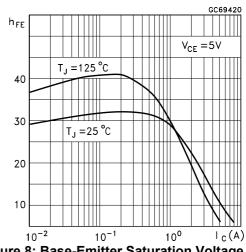
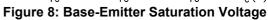
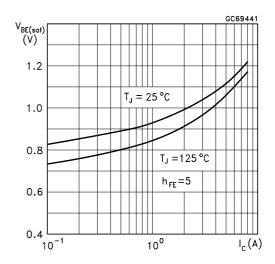
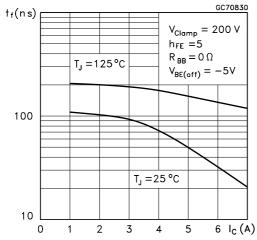






Figure 7: DC Current Gain

Figure 9: Inductive Load Fall Time

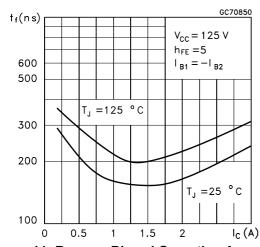


Figure 11: Reverse Biased Operating Area



Figure 12: Inductive Load Stoarage Time

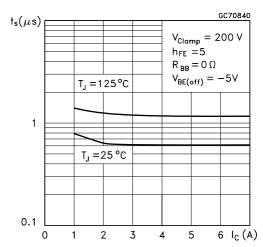
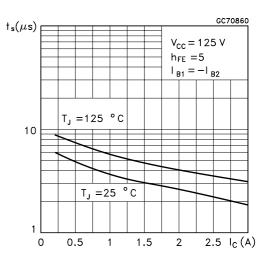



Figure 13: Resistive Load Stoarage Time

Figure 14: Inductive Load Switching Test Circuit

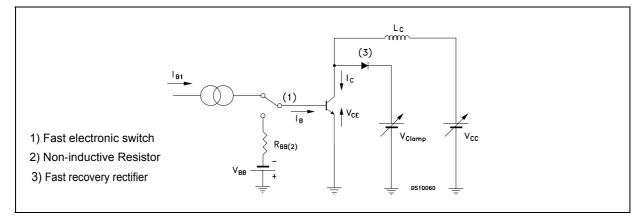
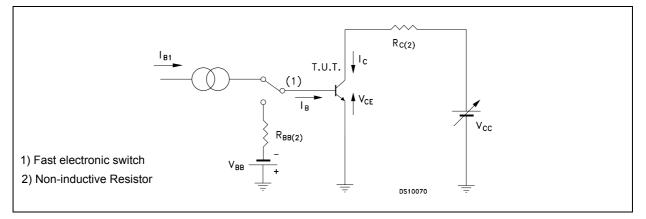
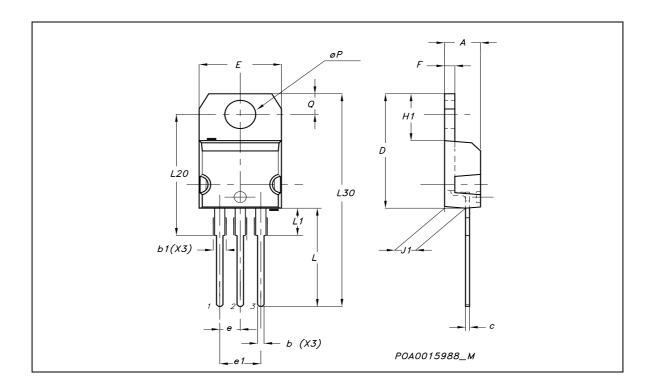




Table 15: Restistive Load Switching Test Circuit

DIM.		mm.			inch		
DINI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
b	0.61		0.88	0.024		0.034	
b1	1.15		1.70	0.045		0.066	
С	0.49		0.70	0.019		0.027	
D	15.25		15.75	0.60		0.620	
E	10		10.40	0.393		0.409	
е	2.40		2.70	0.094		0.106	
e1	4.95		5.15	0.194		0.202	
F	1.23		1.32	0.048		0.052	
H1	6.20		6.60	0.244		0.256	
J1	2.40		2.72	0.094		0.107	
L	13		14	0.511		0.551	
L1	3.50		3.93	0.137		0.154	
L20		16.40			0.645		
L30		28.90			1.137		
øP	3.75		3.85	0.147		0.151	
Q	2.65		2.95	0.104		0.116	

Table 5:

Version	Release Date	Change Designator
01-Oct-2002	1	First Release.
15-Feb-2005	1	Added table 1 on page 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

