

3.3V CMOS 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD

IDT74LVCH16601A OBSOLETE PART

FEATURES:

- Typical tSK(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- Available in SSOP package

DRIVE FEATURES:

- · High Output Drivers: ±24mA
- · Reduced system switching noise

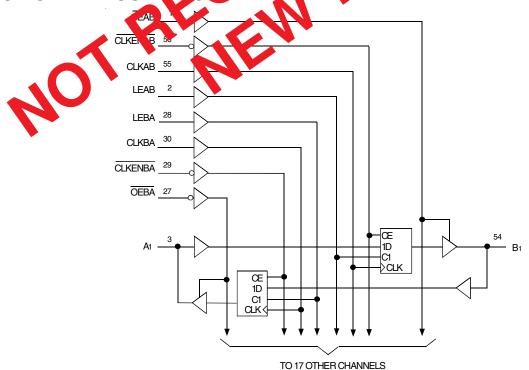
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:

The LVCH16601A 18-bit universal bus transceiver is built using advanced dual metal CMOS technology. The LVCH16601A combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

Data flow in each direction is controlled by output-enable (\overline{OEAB} and \overline{OEBA}), latched-enable (LEAB and LEBA), and clock (CLKAC and CLKBA) inputs. The clock can be convolled by the clock-enable $\overline{CLKENBA}$) inputs.

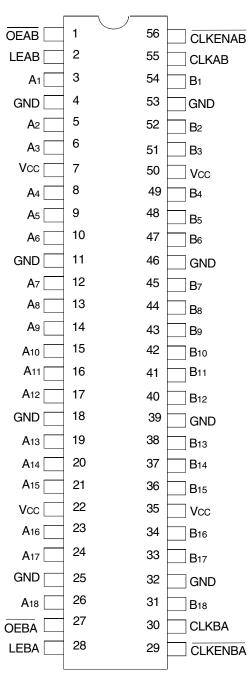

For A-to-B data ff. w, the device operates is the transportent mode when LEAB is high, to then to AB to low, the A data is atcheor CLKAB is held at a high or boyloric medium LEAB is locative A-boy data is stored in the latch/flip-flop and blood -to-high transition of Ct. KAB. Output enable \overline{OEAB} is active two. When \overline{OEAB} is low, the output size a civic. When \overline{OEAB} is high, the apputs are in the high concentration. Data flow for B to A is similar to that flow B but uses \overline{EBA} . E.E.A., CLKBA and $\overline{CLKENBA}$.

All pins can be triver from either 3.3 or FV devices. This feature allows the use of the device as a translator in a mixed 3.3 V/5V supply system.

The CH10 301A has been as a dwith a ±24mA output driver. This of the pable of driving a too grate to heavy load while maintaining to be performance.

The LVCH 6601A has "bus-hold" which retains the inputs' last state whenever, the input cles to a high impedance. This prevents floating inputs and eline at each need for pull-up/down resistors.

FUNCTIONAL BLOCK PLACE AM


`.....

INDUSTRIAL TEMPERATURE RANGE

JUNE 2006

PIN CONFIGURATION

SSOP TOP VIEW

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	рF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or VO < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
ŌĒĀB	A-to-B Output Enable Input (Active LOW)
ŌĒBĀ	B-to-A Output Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs ⁽¹⁾
Bx	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾
CLKENAB	A-to-B Clock Enable Input (Active LOW)
CLKENBA B-to-A Clock Enable Input (Active LOW)	

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE(1,2)

	Inputs				
CLKENAB	OEAB	LEAB	CLKAB	Ax	Вх
Х	Н	Х	Х	Х	Z
Х	L	Н	Х	L	L
Х	L	Н	Х	Н	Н
Н	L	L	Х	Х	B ⁽³⁾
L	L	L	1	L	L
L	L	L	1	Н	Н
L	L	L	L	Х	B ⁽³⁾
L	L	L	Н	Х	B ⁽⁴⁾

NOTES:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High-Impedance
 - ↑ = LOW-to-HIGH transition
- 2. A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{\text{OEBA}}$, LEBA, CLKBA, and $\overline{\text{CLKENBA}}$.
- 3. Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

IDT74LVCH16601A 3.3V CMOS 18-BITUNIVERSAL BUSTRANSCEIVER

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Cond	litions	Min.	Typ. ⁽¹⁾	Max.	Unit
ViH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μΑ
lıL							
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ
lozL	(3-State Output pins)						
loff	Input/Output Power Off Leakage	VCC = 0V, VIN or VO ≤ 5.5V		_	_	±50	μΑ
Vıĸ	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	_	_	10	μΑ
ICCH ICCZ			$3.6 \le \text{Vin} \le 5.5 \text{V}^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	μА

NOTES:

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	-75	_	_	μΑ
IBHL			VI = 0.8V	75		1	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μΑ
Івнь			VI = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	±500	μΑ
Івньо							

NOTES:

^{1.} Typical values are at Vcc = 3.3V, $+25^{\circ}C$ ambient.

^{2.} This applies in the disabled state only.

^{1.} Pins with Bus-Hold are identified in the pin description.

^{2.} Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Max.	Unit
Voн	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = -0.1 mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = <i>-</i> 6mA	2	_	
		Vcc = 2.3V	Iон = - 12mA	1.7	_	
		VCC = 2.7V		2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	IOH = -24mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 6mA	_	0.4	
			IOL = 12mA	_	0.7	
		Vcc = 2.7V	IOL = 12mA	_	0.4	
		VCC = 3V	IOL = 24mA	_	0.55	

NOTE:

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

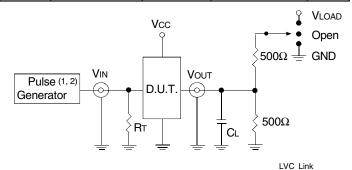
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz		рF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled			

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40°C to + 85°C.

IDT74LVCH16601A

SWITCHING CHARACTERISTICS(1)

			Vcc =	= 2.7V	$VCC = 3.3V \pm 0.3V$		
Symbol	Parameter		Min.	Max.	Min.	Max.	Unit
tplH	Propagation Delay		_	5.4	_	4.6	ns
tPHL	Ax to Bx or Bx to Ax						
tPLH	Propagation Delay		_	6.2	_	5.2	ns
tPHL	LEBA to Ax, LEAB to Bx						
tPLH	Propagation Delay		_	6.3	_	5.3	ns
tPHL	CLKBA to Ax, CLKAB to Bx						
tPZH	Output Enable Time		_	6.8	_	5.6	ns
tpzl	$\overline{\text{OEBA}}$ to Ax, $\overline{\text{OEAB}}$ to Bx						
tPHZ	Output Disable Time		_	6	_	5.2	ns
tPLZ	OEBA to Ax, OEAB to Bx						
tsu	Set-up Time HIGH or LOW		1.5	_	1.5	_	ns
	Ax to CLKAB, Bx to CLKBA						
tH	Hold Time HIGH or LOW		0.8	_	0.8	_	ns
	Ax to CLKAB, Bx to CLKBA						
tsu	Set-up Time HIGH or LOW	Clock LOW	1	_	1	_	ns
	Ax to LEAB, Bx to LEBA	Clock HIGH	1	_	1	_	
tsu	Set-up Time, CLKENAB to CLKAE	3	2.1	_	2.1	_	ns
tsu	Set-up Time, CLKENBA to CLKBA	1	2.1	_	2.1	_	ns
t⊢	Hold Time HIGH or LOW		1.8	_	1.8	_	ns
	Ax after LEAB, Bx after LEBA						
tH	Hold Time, CLKENAB after CLKAB		0.5	_	0.5	_	ns
tH	Hold Time, CLKENBA after CLKBA		0.5	_	0.5	_	ns
tw	LEAB or LEBA Pulse Width HIGH		3	_	3	_	ns
tw	CLKAB or CLKBA Pulse Width H	GH or LOW	3	_	3	_	ns
tsk(o)	Output Skew ⁽²⁾		_	_		500	ps


NOTES:

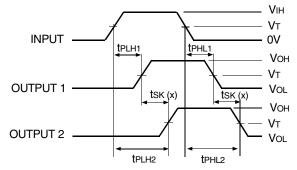
- 1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	٧
ViH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc / 2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

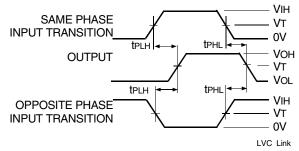

CL = Load capacitance: includes jig and probe capacitance.

 RT = Termination resistance: should be equal to ZOUT of the Pulse Generator. NOTES:

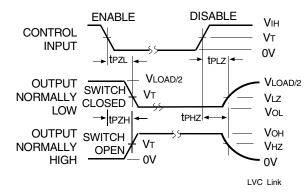
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

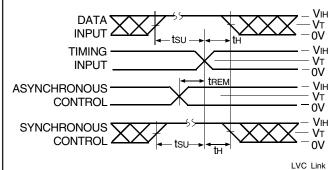


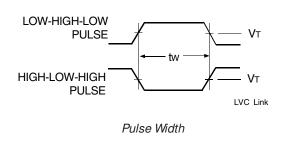
tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


Output Skew - tsk(x)

NOTES:

- 1. For $ts\kappa(o)$ OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

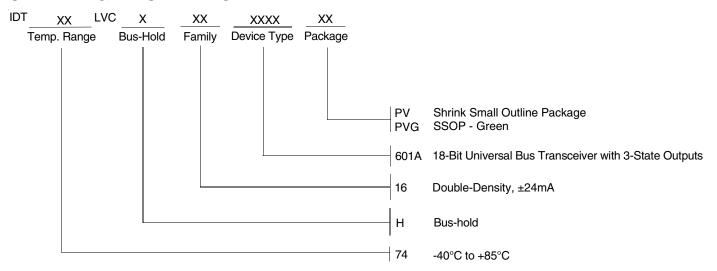

Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times



LVC Link

IDT74LVCH16601A
3.3V CMOS 18-BIT UNIVERSAL BUS TRANSCEIVE

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

10/28/2013 PDN# CQ-13-03 issued. See IDT.com for PDN specifics.

09/06/2019 Datasheet changed to Obsolete Status.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/