

FEATURES

RS-485 transceiver with electrical data isolation Complies with ANSI TIA/EIA RS-485-A and ISO 8482: 1987(E) 500 kbps data rate Slew rate-limited driver outputs Low power operation: 2.5 mA max Suitable for 5 V or 3 V operations (V_{DD1}) **High common-mode transient immunity: >25 kV/μs True fail-safe receiver inputs Chatter-free power-up/power-down protection 256 nodes on bus Thermal shutdown protection Safety and regulatory approvals UL recognition: 2500 V rms for 1 minute per UL 1577 CSA Component Acceptance Notice 5A IEC 60950-1 800 V rms (basic), 400V rms (reinforced) VDE Certificate of Conformity DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 VIORM = 560 V peak (reinforced) VIORM(DC) = 1500 V dc CQC certification per GB4943.1-2011 Operating temperature range: −40°C to +85°C**

APPLICATIONS

Low power RS-485/RS-422 networks Isolated interfaces Building control networks Multipoint data transmission systems

GENERAL DESCRIPTION

The [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) differential bus transceiver is an integrated, galvanically isolated component designed for bidirectional data communication on balanced, multipoint bus transmission lines. It complies with ANSI EIA/TIA-485-A and ISO 8482: 1987(E). Using the *i*Coupler technology from Analog Devices, Inc., the [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) combines a 3-channel isolator, a three-state differential line driver, and a differential input receiver into a single package. The logic side of the device is powered with either a 5 V or 3 V supply, and the bus side uses a 5 V supply only.

The [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) is slew-limited to reduce reflections with improperly terminated transmission lines. The controlled slew rate limits the data rate to 500 kbps. The device's input impedance is 96 kΩ, allowing up to 256 transceivers on the bus. Its driver has an active-high enable feature. The driver differential outputs and receiver differential inputs are connected internally to form a differential input/output (I/O) port.

Half-Duplex, *i*Coupler Isolated RS-485 Transceiver

Data Sheet **[ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf)**

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

When the driver is disabled or when V_{DD1} or $V_{DD2} = 0$ V, this imposes minimal loading on the bus. An active-high receiver disable feature, which causes the receive output to enter a high impedance state, is provided as well.

The receiver inputs have a true fail-safe feature that ensures a logic-high receiver output level when the inputs are open or shorted. This guarantees that the receiver outputs are in a known state before communication begins and at the point when communication ends.

Current limiting and thermal shutdown features protect against output short circuits and bus contention situations that might cause excessive power dissipation. The part is fully specified over the industrial temperature range and is available in a 16-lead, wide body SOIC package.

Rev. F [Document Feedback](https://form.analog.com/Form_Pages/feedback/documentfeedback.aspx?doc=ADM2483.pdf&product=ADM2483&rev=F)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. \bigcirc 2004-2018 Analog Devices, Inc. All rights reserved. **[Technical Support](http://www.analog.com/en/content/technical_support_page/fca.html) www.analog.com**

TABLE OF CONTENTS

REVISION HISTORY

9/2016—Rev. D to Rev. E

7/2015—Rev. C to Rev. D

11/2013—Rev. B to Rev. C

3/2005—Rev. A to Rev. B

Changes to ESD Maximum Rating Specification 5

10/2004—Revision 0: Initial Version

SPECIFICATIONS

 $2.7~\mathrm{V} \leq \mathrm{V_{DD1}} \leq 5.5~\mathrm{V},$ $4.75~\mathrm{V} \leq \mathrm{V_{DD2}} \leq 5.25~\mathrm{V},$ $\mathrm{T_A} = \mathrm{T_{MIN}}$ to $\mathrm{T_{MAX}}$ unless otherwise noted.

Table 1.

¹ Common-mode transient immunity is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. V_{CM} is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

TIMING SPECIFICATIONS

 $2.7~\mathrm{V} \leq \mathrm{V_{DD1}} \leq 5.5~\mathrm{V},$ $4.75~\mathrm{V} \leq \mathrm{V_{DD2}} \leq 5.25~\mathrm{V},$ $\mathrm{T_A} = \mathrm{T_{MIN}}$ to $\mathrm{T_{MAX}}$ unless otherwise noted.

Table 2.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted. All voltages are relative to their respective ground.

Table 3.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 4. Maximum Continuous Working Voltage¹

¹ Refers to continuous voltage magnitude imposed across the isolation barrier.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PACKAGE CHARACTERISTICS

Table 5.

¹ Device considered a 2-terminal device: Pins 1, 2, 3, 4, 5, 6, 7, and 8 shorted together, and Pins 9, 10, 11, 12, 13, 14, 15, and 16 shorted together. 2 Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) has been approved by the following organizations:

Table 6.

¹ In accordance with UL1577, eac[h ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 µA). 2 In accordance with VDE V 0884-10, eac[h ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) is proof tested by applying an insulation test voltage ≥2813 VPEAK for 1 sec (partial discharge detection limit = 5 pC).

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 7.

¹ An ampersand (&) on the physical package denotes the CSA attestation of CTI>600 V and isolation of Material Group I.

DIN V VDE V 0884-10 INSULATION CHARACTERISTICS

This isolator is suitable for reinforced electrical isolation only within this safety limit data. Maintenance of this safety data shall be ensured by means of protective circuits.

An asterisk (*) on the physical package denotes DIN V VDE V 0884-10 approval.

¹ Th[e Absolute Maximum Ratings](#page-4-0) section places limitations on the device due to 50-year lifetime to 1% failure or due to package restrictions (on maximum continuous working voltage for ac bipolar, ac unipolar, and dc voltages, as well as basic and reinforced insulation).

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 9. Pin Function Descriptions

TEST CIRCUITS

Figure 3. Driver Voltage Measurement

Figure 6. Driver Enable/Disable

Figure 4. Driver Voltage Measurement

Figure 7. Receiver Propagation Delay

SWITCHING CHARACTERISTICS

Figure 9. Driver Propagation Delay, Rise/Fall Timing

Figure 10. Receiver Propagation Delay

Figure 12. Receiver Enable/Disable Timing

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 13. Unloaded Supply Current vs. Temperature

Figure 14. Output Current vs. Driver Output Low Voltage

Figure 15. Output Current vs. Driver Output High Voltage

Figure 16. Receiver Output Low Voltage vs. Temperature, I = –4mA

Figure 17. Receiver Output High Voltage vs. Temperature, I = 4 mA

Figure 18. Driver Output Current vs. Differential Output Voltage

Figure 19. Driver Propagation Delay vs. Temperature

Figure 20. Receiver Propagation Delay vs. Temperature

Figure 22. Driver/Receiver Propagation Delay Low to High

Figure 23. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per VDE V 0884

Figure 24. Output Current vs. Receiver Output High Voltage

Figure 25. Output Current vs. Receiver Output Low Voltage

CIRCUIT DESCRIPTION **ELECTRICAL ISOLATION**

In th[e ADM2483,](http://www.analog.com/ADM2483?doc=ADM2483.pdf) electrical isolation is implemented on the logic side of the interface. Therefore, the part has two main sections: a digital isolation section and a transceiver section (see [Figure 26\)](#page-13-2). Driver input and data enable signals, applied to the TxD and DE pins, respectively, and referenced to logic ground (GND₁), are coupled across an isolation barrier to appear at the transceiver section referenced to isolated ground (GND₂). Similarly, the receiver output, referenced to isolated ground in the transceiver section, is coupled across the isolation barrier to appear at the RxD pin referenced to logic ground.

*i***Coupler Technology**

The digital signals are transmitted across the isolation barrier using *i*Coupler technology. This technique uses chip scale transformer windings to couple the digital signals magnetically from one side of the barrier to the other. Digital inputs are encoded into waveforms that are capable of exciting the primary transformer winding. At the secondary winding, the induced waveforms are then decoded into the binary value that was originally transmitted.

Figure 26[. ADM2483 D](http://www.analog.com/ADM2483?doc=ADM2483.pdf)igital Isolation and Transceiver Sections

TRUTH TABLES

The following truth tables use these abbreviations:

Table 10. Transmitting

Table 11. Receiving

POWER-UP/POWER-DOWN CHARACTERISTICS

The power-up/power-down characteristics of the [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) are in accordance with the supply thresholds shown in [Table 12.](#page-14-5) Upon power-up, the [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) output signals (A, B, and RxD) reach their correct state once both supplies exceed their thresholds. Upon power-down, th[e ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) output signals retain their correct state until at least one of the supplies drops below its power-down threshold. When the V_{DD1} power-down threshold is crossed, the [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) output signals reach their unpowered states within 4 μ s.

Table 12. Power-Up/Power-Down Thresholds

THERMAL SHUTDOWN

The [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) contains thermal shutdown circuitry that protects the part from excessive power dissipation during fault conditions. Shorting the driver outputs to a low impedance source can result in high driver currents. The thermal sensing circuitry detects the increase in die temperature under this condition and disables the driver outputs. This circuitry is designed to disable the driver outputs when a die temperature of 150°C is reached. As the device cools, the drivers are re-enabled at a temperature of 140°C.

TRUE FAIL-SAFE RECEIVER INPUTS

The receiver inputs have a true fail-safe feature, which ensures that the receiver output is high when the inputs are open or shorted. During line-idle conditions, when no driver on the bus is enabled, the voltage across a terminating resistance at the receiver input decays to 0 V. With traditional transceivers, receiver input thresholds specified between −200 mV and +200 mV mean that external bias resistors are required on the A and B pins to ensure that the receiver outputs are in a known state. The true fail-safe receiver input feature eliminates the need for bias resistors by specifying the receiver input threshold between −30 mV and −200 mV. The guaranteed negative threshold means that when the voltage between A and B decays to 0 V, the receiver output is guaranteed to be high.

MAGNETIC FIELD IMMUNITY

Because *i*Couplers use a coreless technology, no magnetic components are present, and the problem of magnetic saturation of the core material does not exist. Therefore, *i*Couplers have essentially infinite dc field immunity. The analysis that follows defines the conditions under which this might occur. The 3 V operating condition of th[e ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) is examined because it represents the most susceptible mode of operation.

The limitation on the *i*Coupler's ac magnetic field immunity is set by the condition in which the induced error voltage in the receiving coil (the bottom coil in this case) is made sufficiently large, either to falsely set or reset the decoder. The voltage induced across the bottom coil is given by

$$
V = \left(\frac{-d\beta}{dt}\right) \sum \pi r_n^2; \ \ n = 1, 2, \dots, N
$$

where if the pulses at the transformer output are greater than 1.0 V in amplitude:

 β = magnetic flux density (gauss)

 $N =$ number of turns in receiving coil

 r_n = radius of nth turn in receiving coil (cm)

The decoder has a sensing threshold of about 0.5 V; therefore, there is a 0.5 V margin in which induced voltages can be tolerated.

Given the geometry of the receiving coil and an imposed requirement that the induced voltage is, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown i[n Figure 27.](#page-15-0)

Figure 27. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kGauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse and is the worstcase polarity, it reduces the received pulse from >1.0 V to 0.75 V. This is well above the 0.5 V sensing threshold of the decoder.

These magnetic flux density values are shown i[n Figure 28,](#page-15-1) using more familiar quantities such as maximum allowable current flow, at given distances away from the [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) transformers.

Current-to[-ADM2483 S](http://www.analog.com/ADM2483?doc=ADM2483.pdf)pacings

At combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce large enough error voltages to trigger the thresholds of succeeding circuitry. To avoid this possibility, care should be taken in the layout of such traces.

APPLICATIONS INFORMATION

POWER_VALID INPUT

To avoid chatter on the A and B outputs caused by slow power-up and power-down transients on V_{DD1} (>100 $\mu s/V$), the [ADM2483](http://www.analog.com/ADM2483?doc=ADM2483.pdf) features a power_valid (PV) digital input. This pin should be driven low until V_{DD1} exceeds 2.0 V. When V_{DD1} is greater than 2.0 V, the pin should be driven high. Conversely, upon powerdown, the PV should be driven low before V_{DD1} reaches 2.0 V.

The power_valid input can be driven, for example, by the output of a system reset circuit such as th[e ADM809Z,](http://www.analog.com/ADM809?doc=ADM2483.pdf) which has a threshold voltage of 2.32 V.

ISOLATED POWER SUPPLY CIRCUIT

The [ADM2483 r](http://www.analog.com/ADM2483?doc=ADM2483.pdf)equires isolated power capable of 5 V at 100 mA to be supplied between the V_{DD2} and GND_2 pins. If no suitable integrated power supply is available, a discrete circuit, such as the one in [Figure 30,](#page-16-3) can be used. A center-tapped transformer provides electrical isolation. The primary winding is excited with a pair of square waveforms that are 180° out of phase with each other. A pair of Schottky diodes and a smoothing capacitor are used to create a rectified signal from the secondary winding. The [ADP667 l](http://www.analog.com/ADP667?doc=ADM2483.pdf)inear voltage regulator provides a regulated power supply to the [ADM2483's](http://www.analog.com/ADM2483?doc=ADM2483.pdf) bus-side circuitry.

To create the pair of square waves, a D-type flip-flop with complementary Q/\overline{Q} outputs is used. The flip-flop can be connected so that output Q follows the clock input signal. If no local clock signal is available, a simple digital oscillator can be implemented with a hex-inverting Schmitt trigger and a resistor and capacitor. In this case, values of 3.9 kΩ and 1 nF generate a 364 kHz square wave. A pair of discrete NMOS transistors, switched by the Q/\overline{Q} flip-flop outputs, conduct current through the center tap of the primary transformer, winding in an alternating fashion.

OUTLINE DIMENSIONS

ORDERING GUIDE

 $1 Z =$ RoHS Compliant Part.

2 -REEL suffix designates a 13-inch (1,000 units) tape-and-reel option.

www.analog.com

Rev. F | Page 18 of 18