

Single Supply V_{IN}, LOW V_{IN}, LOW V_{OUT}, 1A LDO

Features

- Single Input Voltage Range: V_{IN} 1.65V to 5.5V
- Maximum Dropout ($V_{IN} V_{OUT}$) of 500 mV over Temperature
- Adjustable Output Voltage Down to 0.5V
- Stable with 4.7 µF Ceramic Output Capacitor
- Excellent Line and Load Regulation Specifications
- · Logic-Controlled Shutdown
- Thermal Shutdown and Current-Limit Protection
- 10-Pin 3 mm x 3 mm DFN Package
- –40°C to +125°C Junction Temperature Range

Applications

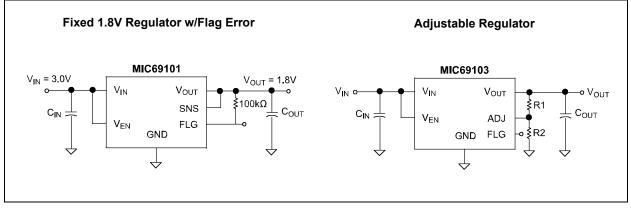
- Point-of-Load Applications
- Industrial Power
- Sensitive RF Applications

General Description

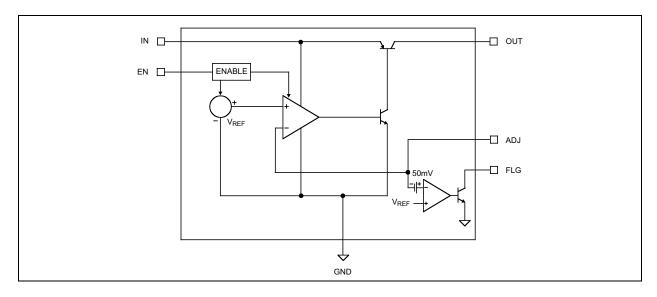
The MIC69101/103 are the 1A output current member of the MIC69xxx family of high current, low voltage regulators, that support currents of 1A, 1.5A, 3A, and 5A. The MIC69101/103 operates from a single low voltage supply, yet offers high precision and ultra-low dropout of 500 mV under worst case conditions.

The MIC69101/103 operate from an input voltage of 1.65V to 5.5V. It is designed to drive digital circuits requiring low voltage at high currents (i.e. PLDs, DSP, microcontroller, etc.). These regulators are available in adjustable and fixed output voltages including 1.8V. The adjustable version can support output voltages down to 0.5V.

The μCap design of the MIC69101/103 is optimized for stability with low value low-ESR ceramic output capacitors.


Features of the MIC69101/103 include thermal shutdown and current limit protection. Logic enable and error flag pins are also available.

The MIC69101/103 are offered in a tiny 10-pin 3 mm x 3 mm DFN package and has an operating temperature range of -40° C to $+125^{\circ}$ C.


Package Type

Typical Application Circuits

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Input Voltage (V _{IN})	+6V
Logic Input Voltage (V _{FN})	
Power Dissipation (P _D) (Note 1)	Internally Limited
Flag Pin (FLG)	+6V
ESD Rating (Note 1)	

Operating Ratings ‡

Supply Voltage (V _{IN})	+1.65V to +5.5V
Enable Input Voltage (V _{EN})	0V to V _{IN}

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. Specifications are for packaged product only.

‡ Notice: The device is not guaranteed to function outside its operating ratings.

- **Note 1:** The maximum allowable power dissipation of any T_A (ambient temperature) is $P_{D(max)} = (T_{J(max)} T_A) / \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature and the regulator will go into thermal shutdown.
 - **2:** Devices are ESD sensitive. Handling precautions are recommended. Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF

TABLE 1-1: ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $T_A = 25^{\circ}C$ with $V_{IN} = V_{OUT} + 0.5V$; Bold values indicate $-40^{\circ}C \le T_J \le +125^{\circ}C$;
I_{OUT} = 10 mA; C_{OUT} = 4.7 µF ceramic, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Output Voltage Accuracy (Fixed)	N/	-2		+2	%	Over temperature range
Output Voltage Accuracy (Adj)	V _{OUT}	0.49	0.5	0.51	V	—
Feedback Pin Current	I _{FB}		0.21	1	μA	—
Output Voltage Line Regulation			±0.1	±0.3	%/V	$V_{IN} = V_{OUT} + 1.0V$ to 5.5V
(Note 1)	ΔV _{OUT} /ΔV _{IN}	—				For V _{OUT} ≥ 0.65V, V _{IN} = 1.65 to 5.5V
Output Voltage Load Regulation	ΔV _{OUT} /V _{OUT}	—	±0.25	_	%	I _L = 10 mA to 1A
V _{IN} – V _{OUT} ; Dropout Voltage			150	300	mV	I _L = 0.5A
(Note 2)	V _{DO}	_	215	500	mV	I _L = 1.0A
	I _{GND}	_	1.1	_	mA	I _L = 10 mA
Ground Pin Current			4.7	_	mA	I _L = 0.5A
			11	20	mA	I _L = 1.0A
Ground Pin Current in Shutdown	I _{SHDN}	_	1	_	μA	V _{EN} = 0V
Current Limit	I _{LIM}	1.2	1.95	_	Α	V _{OUT} = 0V
Start-up Time	t _{START}	—	10	150	μs	V _{EN} = V _{IN}
Thermal Shutdown	Th _{SHDN}	_	165	_	°C	—
Enable Input						
Enable Input Threshold	V _{EN}	0.8	0.6	—	V	Regulator enable
Enable Input Threshold		_	—	0.2	V	Regulator shutdown
Enchle Din Innut Current		_	0.005	—	μA	V _{IL} ≤ 0.2V (Regulator shutdown)
Enable Pin Input Current	I _{EN}		7		μA	V _{IH} ≥ 0.8V (Regulator enable)

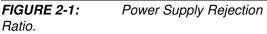
Electrical Characteristics: $T_A = 25^{\circ}C$ with $V_{IN} = V_{OUT} + 0.5V$; **Bold** values indicate $-40^{\circ}C \le T_J \le +125^{\circ}C$; $I_{OUT} = 10$ mA; $C_{OUT} = 4.7 \mu$ F ceramic, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Flag Output						
Flag Output Leakage Current	I _{FLG(LEAK)}	_	0.05		μA	Flag off
Output Logic-Low Voltage (Undervoltage condition)	V _{FLG(LO)}	_	150	_	mV	I _L = 5 mA
Flag Threshold	V _{FLG}	7.5	10	14	%	% of V _{OUT} below nominal (falling)
Hysteresis	—	_	2		%	—

1: Minimum input for line regulation test is set to V_{OUT} + 1V relative to the highest output voltage.

2: Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. For outputs below 1.65V, dropout voltage is considered the input-to-output voltage differential with the minimum input voltage of 1.65V. Minimum input operating voltage is 1.65V.

TEMPERATURE SPECIFICATIONS (Note 1)


Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Storage Temperature Range	Τs	-65	—	+125	°C	—
Junction Temperature Range		-40	_	+125	°C	—
Package Thermal Resistances						
Thermal Resistance (3 mm x 3 mm DFN-10)	θ_{JA}	—	60	_	°C/W	—

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

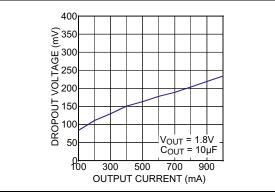
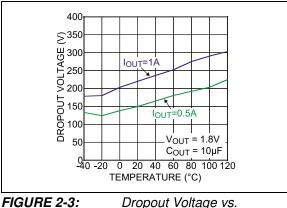



FIGURE 2-2: Dropout Voltage vs. Output Current.

Temperature.

Dropout Voltage vs.

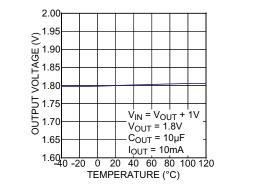


FIGURE 2-4: Temperature.

Output Voltage vs.

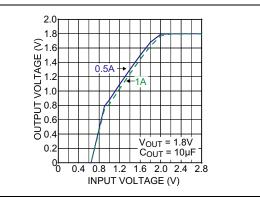


FIGURE 2-5: Output Voltage vs. Input Voltage.

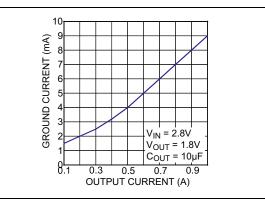


FIGURE 2-6: Ground Current vs. Output Current.

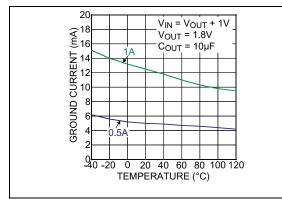
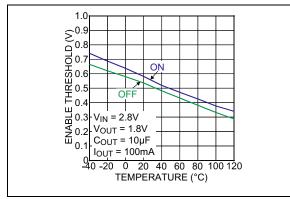
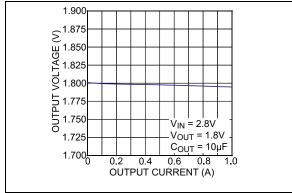




FIGURE 2-7: Ground Current vs. Temperature.

FIGURE 2-8: Enable Threshold vs. Temperature.

Load Regulation.

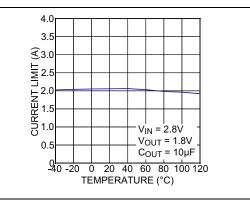


FIGURE 2-10: Current-Limit vs. Temperature.

FIGURE 2-11: Line Transient.

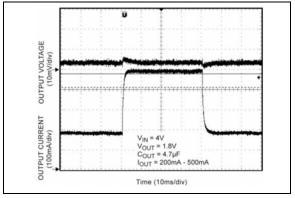


FIGURE 2-12: Load Transient.

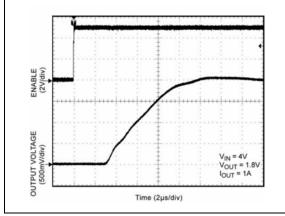


FIGURE 2-13: Enable Turn-On.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

Pin Number	Pin Name	Description	
1	FLG	Error Flag (Output): Open collector output. Active low indicates an output fault condition.	
2, 4, 5, 8	NC	Not internally connected.	
3 (EP)	GND	Ground (exposed pad is recommended to connect to ground on DFN).	
6	EN	Enable (Input): CMOS compatible input. Logic high = enable, logic low = shutdown. Do not leave pin floating.	
7	VIN	Input voltage that supplies current to the output power device.	
9	VOUT	Regulator Output.	
10 (ADJ)	ADJ	Adjustable regulator feedback input. Connect to resistor voltage divider.	
10 (FIXED)	SNS	Sense pin, connect to output for improved voltage regulation.	

TABLE 3-1: PIN FUNCTION TABLE

4.0 APPLICATION INFORMATION

The MIC69101/103 are ultra-high performance low dropout linear regulators designed for high current applications requiring a fast transient response. They utilize a single input supply, perfect for low-voltage DC-to-DC conversion. The MIC69101/103 require a minimum number of external components. The MIC69101/103 regulators are fully protected from damage due to fault conditions offering constant current limiting and thermal shutdown.

4.1 Input Supply Voltage

 $V_{\rm IN}$ provides a high current to the collector of the pass transistor. The minimum input voltage is 1.65V allowing conversion from low voltage supplies.

4.2 Input Capacitor

An input capacitor of 1 μ F or greater is recommended when the device is more than 4 inches away from the bulk AC supply capacitance or when the supply is a battery. Small, surface mount, ceramic chip capacitors can be used for bypassing. The capacitor should be placed within 1 inch of the device for optimal performance. Larger values will help to improve ripple rejection by bypassing the input to the regulator, further improving the integrity of the output voltage.

4.3 Output Capacitor

The MIC69101/103 require a minimum of output capacitance to maintain stability. However, proper capacitor selection is important to ensure desired transient response. The MIC69101/103 are specifically designed to be stable with low ESR ceramic chip capacitors. A 4.7 μ F ceramic chip capacitor should satisfy most applications. Output capacitor can be increased without bound. See typical characteristics for examples of load transient response.

X7R dielectric ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by only 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric the value must be much higher than an X7R ceramic or a tantalum capacitor to ensure the same capacitance value over the operating temperature range. Tantalum capacitors have a very stable dielectric (10% over their operating temperature range) and can also be used with this device.

4.4 Minimum Load Current

The MIC69101/103 regulator is specified between finite loads. If the output current is too small, leakage currents dominate and the output voltage rises. A 10 mA minimum load current is necessary for proper operation.

4.5 Adjustable Regulator Design

The MIC69103 adjustable version allows programming the output voltage anywhere between 0.5V and 5.5V with two resistors. The resistor value between $V_{\rm OUT}$ and the adjust pin should not exceed

10 k Ω . Larger values can cause instability. The resistor values are calculated by:

EQUATION 4-1:

$$V_{OUT} = 0.5 \left(\frac{R1}{R2} + 1\right)$$

Where:

V_{OUT} is the desired output Voltage

4.6 Enable

The MIC69101 fixed output voltage version features an active high enable input (EN) that allows on-off control of the regulator. Current drain reduces to near "zero" when the device is shutdown, with only microamperes of leakage current. EN may be directly tied to $V_{\rm IN}$ and pulled up to the maximum supply voltage.

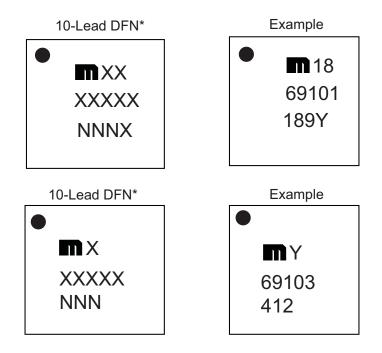
4.7 Thermal Design

Linear regulators are simple to use. The most complicated design parameters to consider are thermal characteristics. Thermal design requires the following application-specific parameters:

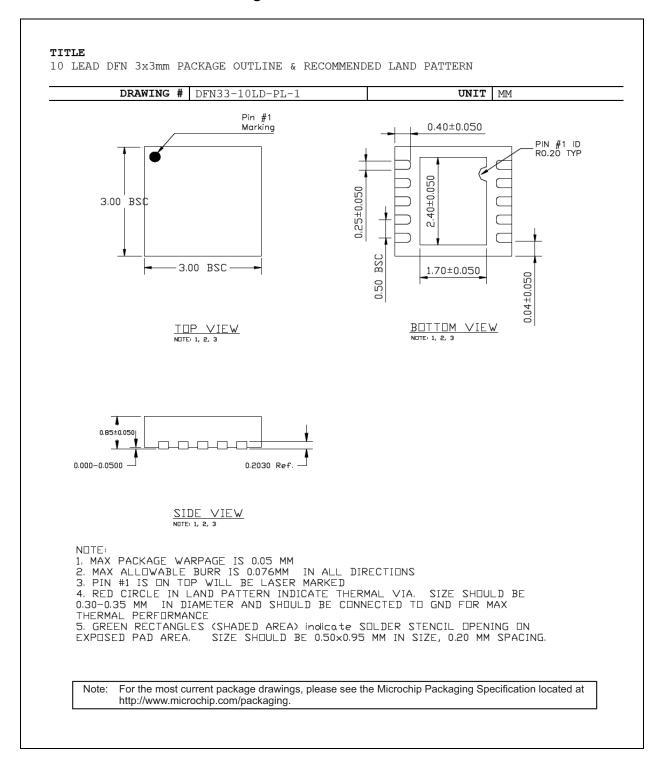
- Maximum ambient temperature (T_A)
- Output current (I_{OUT})
- Output voltage (V_{OUT})
- Input voltage (V_{IN})
- Ground current (I_{GND})

First, calculate the power dissipation of the regulator from these numbers and the device parameters from this data sheet.

EQUATION 4-2:

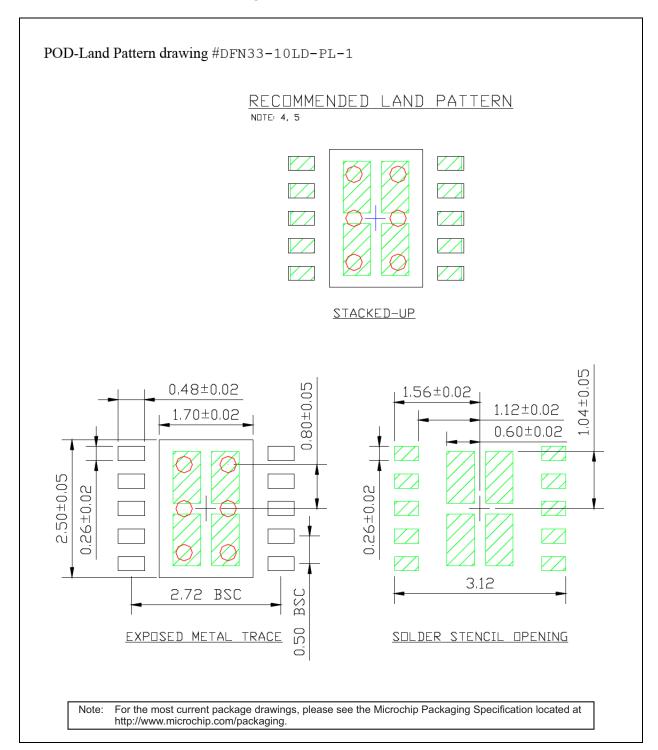

$$P_D = (V_{IN} - V_{OUT})I_{OUT} + V_{IN} \times I_{GND}$$

In Equation 4-2, the ground current is approximated by using numbers from the **Section 1.0** "Electrical Characteristics" or **Section 2.0** "Typical Performance Curves" sections. The maximum allowable power dissipation of any T_A (ambient temperature) is $P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature and the regulator will go into thermal shutdown.


Refer to Application Note 9 for further details and examples on thermal design and heat sink applications.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information



Legend:	 XXX Product code or customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code e3 Pb-free JEDEC[®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package. •, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).
k c t	the event the full Microchip part number cannot be marked on one line, it will carried over to the next line, thus limiting the number of available aracters for customer-specific information. Package may or may not include corporate logo. derbar (_) and/or Overbar (⁻) symbol may not be to scale.

10-Lead 3 mm x 3 mm DFN Package Outline and Recommended Land Pattern

10-Lead 3 mm x 3 mm DFN Package Outline and Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision A (May 2018)

- Converted Micrel document MIC69101/103 to Microchip data sheet DS20006018A.
- Minor text changes throughout.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<u> PART NO. –X.)</u>	<u>x xx -xx</u>	Examples:
Device Outpu Volta		a) MIC69101-1.8YML- TR: Single Supply V _{IN} , LOW V _{IN} , LOW V _{OUT} , 1A LDO, 1.8 Fixed Output Voltage, -40°C to +125°C Junction Temperature Range, 10-Lead DFN
Device:	MIC6910x: Single Supply V _{IN} , LOW V _{IN} , LOW 1 1A LDO MIC69101: Fixed Output Voltage MIC69103: Adjustable Output Voltage Down to	b) MIC69103YML-TR: Single Supply V _{IN} , LOW V _{IN} , LOW V _{OUT} , 1A LDO, Adjustable Output Voltage, -40°C to +125°C Junction
Output Voltage:	1.8 = 1.8V Fixed <blank> = Adjustable</blank>	
Junction Temperature Range:	Y = -40°C to +125°C, Industrial, RoHS Compliant	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip
Package:	ML = 10-Lead DFN (3 mm x 3 mm x 0.9 m	
Media Type:	TR = 5000/Reel	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoa, KEELoa logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-3000-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Tel: 84-28-5448-2100

Italy - Padova Tel: 39-049-7625286

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Singapore Tel: 65-6334-8870 Taiwan - Hsin Chu

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh