
AUTOMOTIVE GRADE

AUIRF4905

HEXFET® Power MOSFET

Features

- Advanced Planar Technology
- Low On-Resistance
- Dynamic dV/dT Rating
- 175°C Operating Temperature
- Fast Switching
- · Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Timax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

V _{DSS}	-55V
R _{DS(on)} max.	0.02Ω
I _D	-74A

G	D	S
Gate	Drain	Source

Description

Specifically designed for Automotive applications, this cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

Base next number	Dookogo Typo	Standard Pack Form Quantity		Ordereble Bort Number
Base part number	Package Type			Orderable Part Number
AUIRF4905	TO-220	Tube	50	AUIRF4905

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	-74	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	-52	Α
I _{DM}	Pulsed Drain Current ①	-260	
P _D @T _C = 25°C	Maximum Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS} Gate-to-Source Voltage		± 20	V
E _{AS} Single Pulse Avalanche Energy (Thermally Limited) ②		930	mJ
I _{AR} Avalanche Current ①		-38	А
E _{AR}	Repetitive Avalanche Energy ①	20	mJ
dv/dt Peak Diode Recovery dv/dt®		-5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T_{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ⑦		0.75	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

HEXFET® is a registered trademark of Infineon.

1 2015-11-9

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	-55			V	$V_{GS} = 0V, I_{D} = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.05		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.02	Ω	$V_{GS} = -10V, I_{D} = -38A \oplus$
$V_{GS(th)}$	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
gfs	Forward Trans conductance	21			S	$V_{DS} = -25V, I_{D} = -38A$
	Drain-to-Source Leakage Current			-25	uА	$V_{DS} = -55V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			-250	μΑ	$V_{DS} = -44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	n ^	V _{GS} = -20V
	Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

•	O , ,	•	,		
Q_g	Total Gate Charge	 	180		I _D = -38A
Q_{gs}	Gate-to-Source Charge	 	32	nC	$V_{DS} = -44V$
Q_{gd}	Gate-to-Drain Charge	 	86		V _{GS} = -10V,See Fig 6 and 13 ④
$t_{d(on)}$	Turn-On Delay Time	 18			$V_{DD} = -28V$
t _r	Rise Time	 99		no	$I_{D} = -38A$
$t_{d(off)}$	Turn-Off Delay Time	 61		ns	$R_G = 2.5\Omega$,
t_f	Fall Time	 96			R _D = 0.72Ω, See Fig. 10 ④
L_D	Internal Drain Inductance	 4.5			Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance	 7.5		1111	from package and center of die contacτ
C_{iss}	Input Capacitance	 3400			$V_{GS} = 0V$
Coss	Output Capacitance	 1400		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance	 640		-	f = 1.0MHz, See Fig. 5

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			-74		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			-260		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25^{\circ}C, I_S = -38A, V_{GS} = 0V $ ④
t _{rr}	Reverse Recovery Time		89	130	ns	$T_J = 25^{\circ}C$, $I_F = -38A$
Q_{rr}	Reverse Recovery Charge		230	350	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig.11)
- © Starting T_J = 25°C, L = 1.3mH, R_G = 25 Ω , I_{AS} = -38A. (See Figure 12) ③ $I_{SD} \le$ -38A, $di/dt \le$ -270A/ μ s, $V_{DD} \le V_{BR}$)DSS, $T_J \le$ 175°C

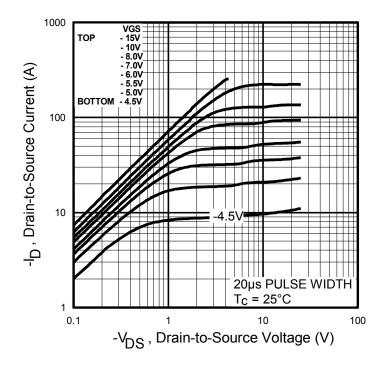


Fig. 1 Typical Output Characteristics

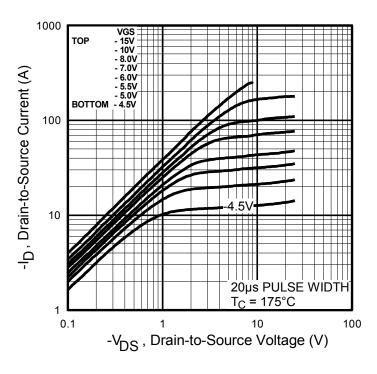


Fig. 2 Typical Output Characteristics

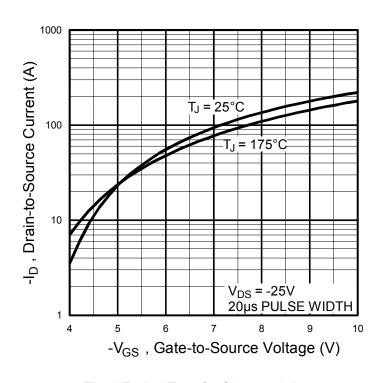
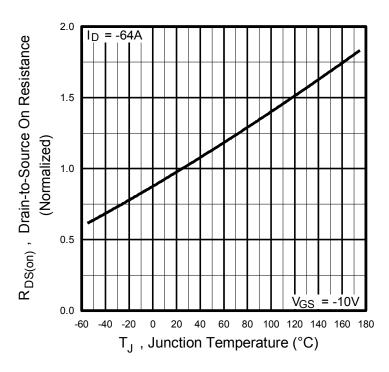



Fig. 3 Typical Transfer Characteristics

Fig. 4 Normalized On-Resistance Vs. Temperature

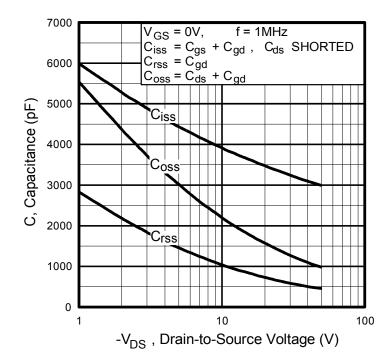


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

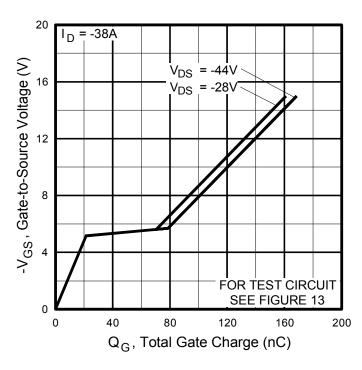
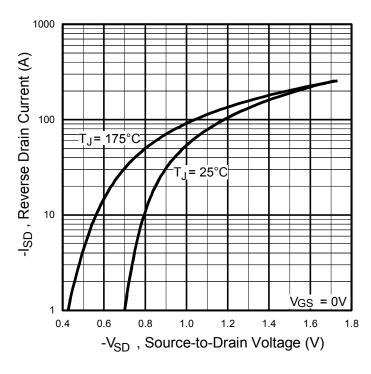



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

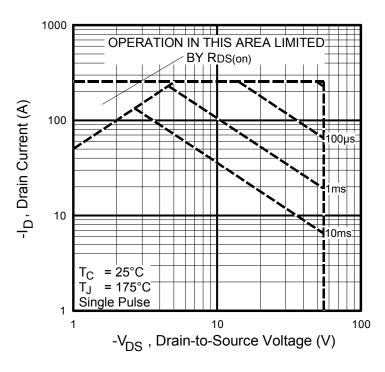


Fig 8. Maximum Safe Operating Area

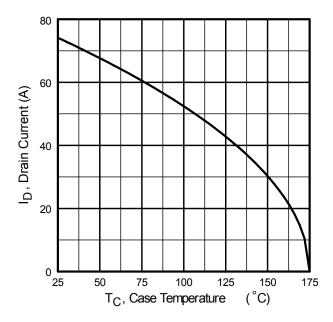


Fig 9. Maximum Drain Current vs.

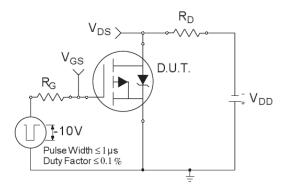


Fig 10a. Switching Time Test Circuit

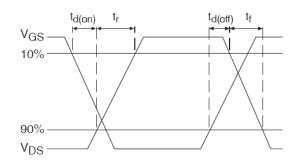


Fig 10b. Switching Time Waveforms

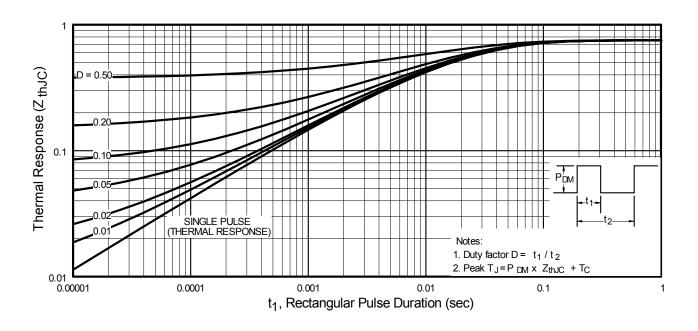
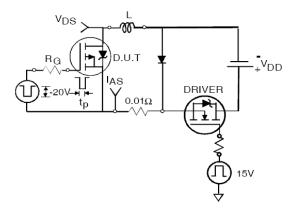
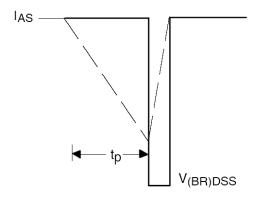
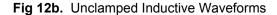
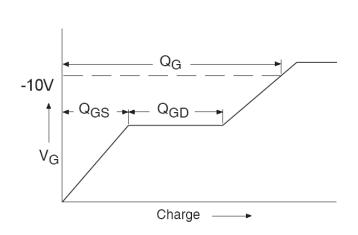


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case


Fig 12a. Unclamped Inductive Test Circuit

2500 I_D Single Pulse Avalanche Energy (mJ) TOP -16A -27A BOTTOM -38A 2000 1500 1000 500 E_{AS} , 50 25 75 100 125 150 175 Starting T_J, Junction Temperature (°C)

Fig 12c. Maximum Avalanche Energy vs. Drain Current

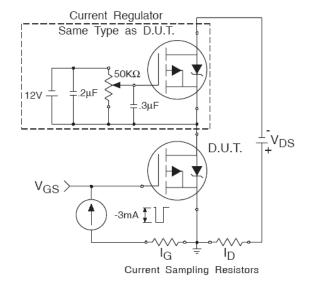
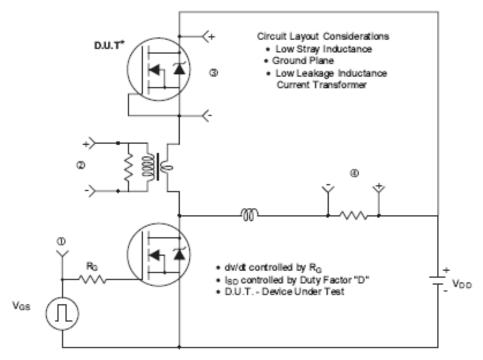



Fig 13a. Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

* Reverse Polarity of D.U.T for P-Channel

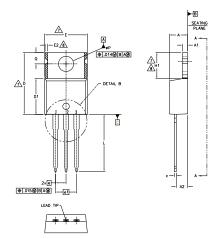
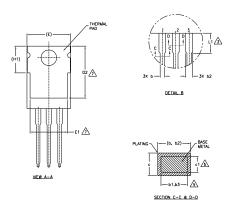




Fig 14. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET® Power MOSFETs

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.

- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].

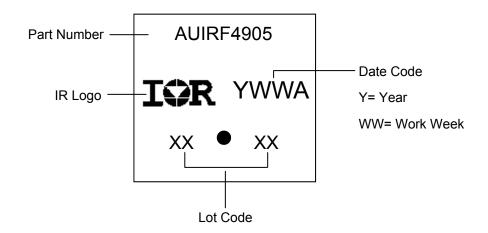
 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.

 DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH
 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 - DIMENSION b1, b3 & c1 APPLY TO BASE METAL ONLY.
- CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIM	ETERS	INC	HES	
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.83	.140	.190	
A1	1,14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
ь1	0.38	0.97	.015	.038	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	_	.030	8
е	2.54	BSC	.100		
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
øΡ	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

HEXFET


1.- GATE 2.- DRAIN 3.- SOURCE

IGBTs, CoPACK 1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

		Automotive (per AEC-Q101)				
Qualificat	tion Level	Comments: This part number(s) passed Automotive qualification. Infined Industrial and Consumer qualification level is granted by extension of the hig Automotive level.				
Moisture	Sensitivity Level	3L-TO-220 N/A				
	Machine Model	Class M4 (+/- 425V) [†]				
	Wacrime Woder	AEC-Q101-002				
ECD	Human Dady Madal	Class H2 (+/- 4000V) [†]				
ESD	Human Body Model	AEC-Q101-001				
Charged Device Model		Class C5 (+/- 1125V) [†]				
		AEC-Q101-005				
RoHS Co	mpliant	Yes				

[†] Highest passing voltage.

Revision History

Date	Comments			
09/20/2017	Updated datasheet with corporate template			
09/20/2017	 Corrected typo error on package outline and part marking on page 8. 			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.