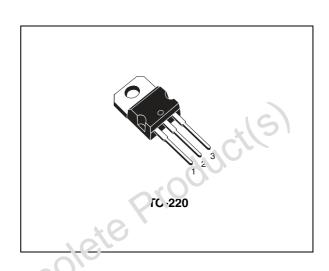


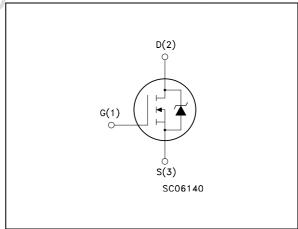
STP120NF04

N-channel 40V - 0.0047Ω - 120A TO-220 STripFET™ II MOSFET

General features


Туре	V _{DSS}	R _{DS(on)}	I _D	Pw
STP120NF04	40V	<0.0050Ω	120A	300W

- Standard threshold drive
- 100% avalanche tested


Description

This MOSFET is the latest development of STMicroelectronics unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

Josolete Product

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STP120NF04	P120NF04	TO-220	Tube

Contents STP120NF04

Contents

1	Electrical ratings 3
2	Electrical characteristics 4
	2.1 Electrical characteristics (curves)
3	Test circuit
4	Package mechanical data
5	Revision history
Opsol	Electrical characteristics

STP120NF04 Electrical ratings

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	40	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25°C	120	Α
I _D	Drain current (continuous) at T _C = 100°C	120	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	480	Α
P _{TOT}	Total dissipation at T _C = 25°C	300	W
	Derating factor	2	W/°C
dv/dt ⁽³⁾	Peak diode recovery voltage slope	0	V/ns
E _{AS} ⁽⁴⁾	Single pulse avalanche energy	1.2	J
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 175	°C

- 1. Current Limited by Package
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq 20A$, di/dt $\leq 300A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $\Gamma_j \leq T_{MAX}$.
- 4. Starting $T_j = 25$ °C, $I_d = 60$ A, $V_{DD} = 30$ V

Table 2. The nal data

	R _{thj-case} โทงาal resistance junction-case Max		0.5	°C/W
	Rthj-pob	Thermal resistance junction-pcb Max	see Figure 14. on page 8	°C/W
0/6	R _{thj-a}	Thermal resistance junction-ambient (free air) Max	62.5	°C/W
0/05	T _I	Maximum lead temperature for soldering purpose	300	°C

Electrical characteristics STP120NF04

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	40			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125 °C			1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20V		AU	£100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5		4.5	٧
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 50 A		0.0047	0.0050	Ω

Table 4. Dynamic

	Symbol	Parameter	િંકડા conditions	Min.	Тур.	Max.	Unit
	g _{fs} ⁽¹⁾	Forward transconductance	√ _{ວຣ} =15V, I _D = 50A		150		S
	C_{iss} C_{oss} C_{rss}	Input capacitance Output capacitar.ce Reverse transfer capacita.ce	V_{DS} =25V, f=1 MHz, V_{GS} =0		5100 1300 160		pF pF pF
	t _{d(or)}	furn on delay time rise time	$V_{DD} = 20 \text{ V}, I_D = 60 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 18)		35 220		ns ns
1050/B	t _{d(off)}	Turn-off delay time fall time	$V_{DD} = 20 \text{ V}, I_D = 60 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 18)		80 50		ns ns
Oh	Q_g	Total gate charge	$V_{DD} = 32V, I_D = 120A$		110	150	nC
	Q _{gs} Q _{gd}	Gate-source charge Gate-drain charge	V _{GS} =10V (see Figure 19)		35 35		nC nC

^{1.} Pulsed: pulse duration=300µs, duty cycle 1.5%

Table 5. Source drain diode

Symbol Parameter Test conditions Min Typ. Max Unit I _{SD} Source-drain current							
$I_{SDM}^{(1)}$ Source-drain current (pulsed) 480 A $V_{SD}^{(2)}$ Forward on voltage $I_{SD}=120A, V_{GS}=0$ 1.3 V t_{rr} Reverse recovery time $I_{SD}=120A, t_{rr}$ di/dt = 100A/us	Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
$V_{SD}^{(2)}$ Forward on voltage $I_{SD}=120A, V_{GS}=0$ 1.3 V t_{rr} Reverse recovery time $I_{SD}=120A, t_{rr}$ di/dt = 100A/us	I _{SD}	Source-drain current				120	Α
t _{rr} Reverse recovery time I _{SD} =120A, di/dt = 100A/us 75 ns	I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				480	Α
rr Reverse recovery time di/dt = 100A/us 75 ns	V _{SD} ⁽²⁾	Forward on voltage	I _{SD} =120A, V _{GS} =0			1.3	V
 Pulse width limited by safe operating area Pulsed: pulse duration=300μs, duty cycle 1.5% 			$di/dt = 100 \Lambda/\mu s$				
	2. Pulsed:	uur iirrited by sale operating area pulse duration=300μs, duty cycle 1.5%	solete	70	40.6		,

Electrical characteristics STP120NF04

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

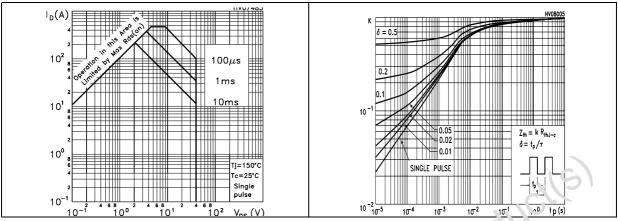


Figure 3. Output characterisics

Figure 4. Transfer characteristics

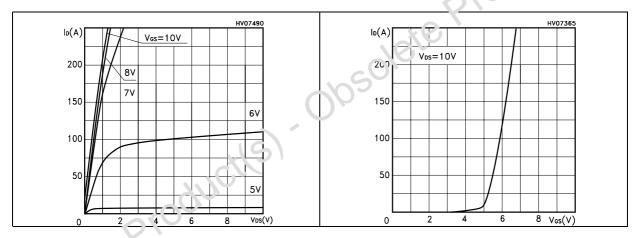


Figure 5. Transconductance

Figure 6. Static drain-source on resistance

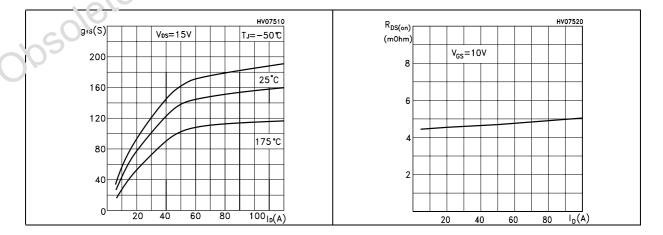
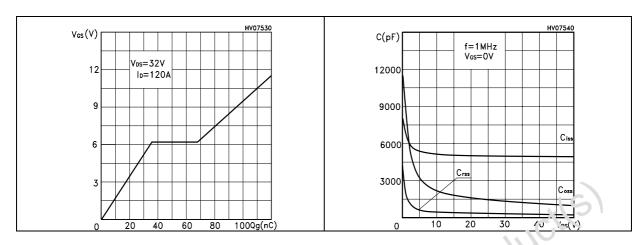



Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variation

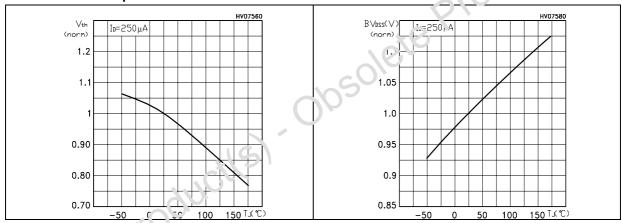
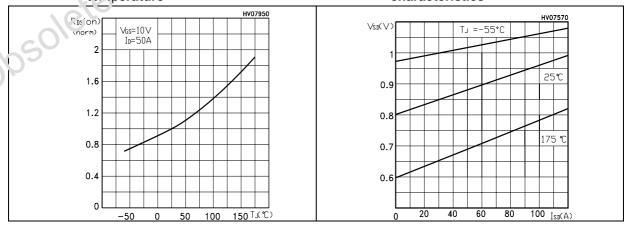
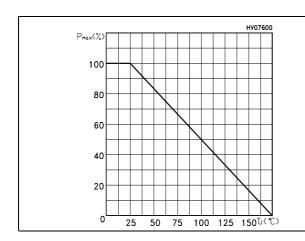



Figure 11. Norn caized on resistance vs temperature


Figure 12. Source-drain diode forward characteristics

Electrical characteristics STP120NF04

Figure 13. Power derating vs Tc

Figure 14. Thermal resistance Rthj-a vs PCB copper area

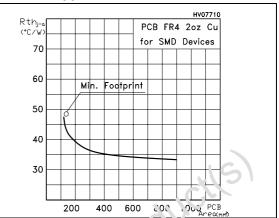
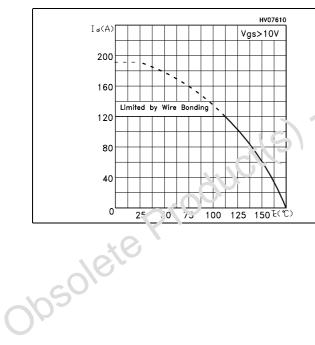



Figure 15. Max id current vs Tc

Figure 16. Max power diss pation vs PCB copper area

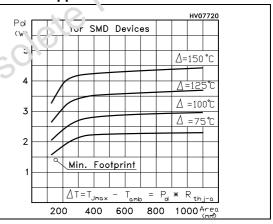
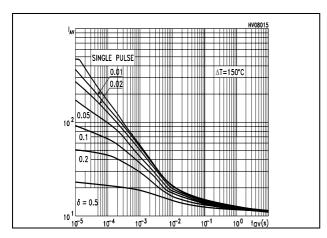



Figure 17. Allowable lav vs time in avalanche

The previous curve gives the safe operating area for unclamped inductive leads, single pulse or repetitive, under the following conditions:

solete

$$P_{D(AVE)} = 0.5*(1.3*BV_{DSS}*I_{AV})$$

$$E_{AS(AR)} = P_{D(AVE)} * t_{AV}$$

Where:

I_{AV} is the allowable current in avalanche

P_{D(AVE)} is the average power dissipation in avalanche (single pulse)

t_{AV} is the time in avalanch?

To derate above 2: °C, at fixed I_{AV.} the following equation must be applied:

$$I_{AV} = 2 * (T_{jmax} - T_{CASE}) / (1.3 * BV_{DSS} * Z_{th})$$

√viiere:

 Z_{th} = K * R_{th} is the value coming from Normalized Thermal Response at fixed pulse width equal to T_{AV} .

Test circuit STP120NF04

3 Test circuit

Figure 18. Switching times test circuit for resistive load

Figure 19. Gate charge test circuit

Figure 20. Test circuit for inductive load switching and diode recovery times

Figure 21. Unalamped Inductive load test

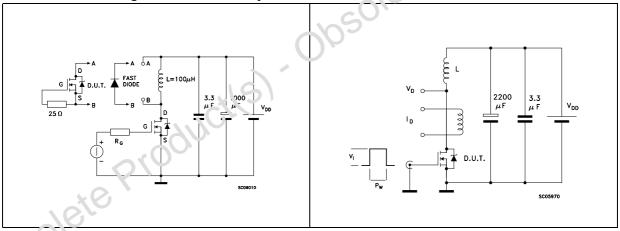
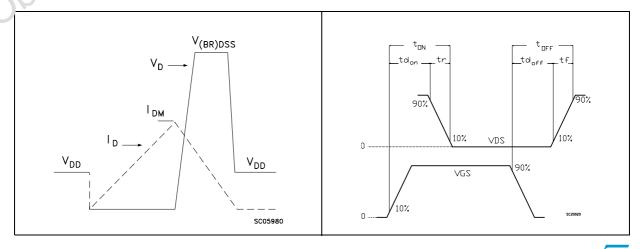
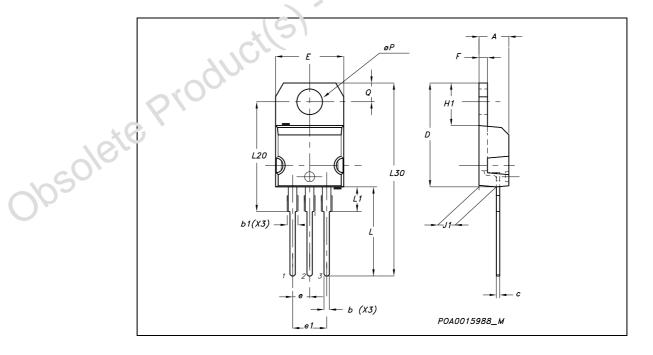



Figure 22. Unclamped inductive waveform

Figure 23. Switching time waveform

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Obsolete Product(s). Obsolete Product(s)

577

TO-220 MECHANICAL DATA

DIM.		mm.			inch	
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		U 100
e1	4.95		5.15	0.194	77	0.202
F	1.23		1.32	0.048	90%	0.052
H1	6.20		6.60	0.244	40	0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		7.85	0.147		0.151
Q	2.65		2.93	0.104		0.116

STP120NF04 Revision history

5 Revision history

Table 6. Revision history

Date	Revision	Changes
28-Feb-2005	1	First release.
02-Oct-2006	2	New template, no content change

Obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidia ric s (Sr") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and servings described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property 'ig 't's 's granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warrancy covering the use in any manner whatsoever of such third party products or services or any intellectual property contained the rein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS: FCr A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VICTING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OF WANDANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROFERING OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE "SED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST | roducts with provisions different from the statements and/or technical features set forth in this document shall immediately void any warran'ty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liabil'ity of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577