# XPOW-8AX-CV-U

# SPECIFICATION SHEET AND MANUAL 2023





Version: 2.4 Date: 12 April 2023

#### Important Notice and Disclaimer:

No part of this document may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Nicslab. No responsibility is assumed by Nicslab for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Trademarks and registered trademarks are the property of their respective owners.

This product is designated for skilled user. You are entirely responsible for (1) choosing the appropriate Nicslab products for your operation, (2) designing, validating and testing your operation, (3) ensuring your operation meets applicable standards, and any other safety, security or other requirements.

Copyright © 2023, Nicslab.

# Safety Note

Do not operate this product in any manner not specified by Nicslab. Failure to comply with these precautions or with specific warnings or instructions elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Nicslab assumes no responsibility for any damage caused by mishandling that is beyond normal usage defined in this manual of this product.

#### Before Applying DC Power Supply

Verify that the DC power supply is good condition and safe to use. It is imperative to use ONE DC power supply as a source power for this product and the input voltage is no more than 36 V, or it can impair this product. Make all connections to the unit before applying power.

Do Not Discard the Instrument Cover Only authorized personnel from Nicslab should remove the instrument cover.

#### Do Not Alter the Instrument

Do not put any unauthorized parts or modify the instrument without Nicslab approval and warranty.

#### **Caution**

This symbol indicates the hazard of any operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data.

# Contents

| List     | of Tables                                      | 4  |
|----------|------------------------------------------------|----|
| List     | of Figures                                     | 4  |
| 1.       | Introduction                                   | 5  |
| 2.       | Hardware                                       | 7  |
|          | Specification Conditions                       | 7  |
|          | Hardware Requirement                           | 7  |
|          | Box Descriptions                               | 8  |
|          | XPOW-8AX-CV-U Specifications                   | 11 |
|          | Hardware Installation                          | 12 |
| 3.       | Software and Graphical User Interface (GUI)    | 13 |
|          | Software Requirement                           | 13 |
|          | Software Installation                          | 13 |
|          | How to Detect Which COM Is Used (Windows only) | 14 |
|          | Graphical User Interface (GUI)                 | 14 |
|          | Initializing the GUI                           | 17 |
|          | Premium Upgrade                                | 17 |
|          | Constant Voltage (CV) Mode                     | 19 |
|          | Value Increment Setting                        | 19 |
|          | Save and Upload                                | 19 |
|          | Sequence Automation                            | 22 |
|          | Record                                         | 23 |
|          | Setting                                        | 24 |
| 4.       | Operating XPOW through SCPI command            | 26 |
|          | Python Installation (Example)                  | 26 |
|          | Run Python Code (Example)                      | 26 |
|          | Python Function (Example)                      | 28 |
|          | SCPI Commands                                  | 31 |
| 5.       | System Shutdown                                | 35 |
| 6.       | Troubleshooting                                | 36 |
| 7.       | Warranty                                       | 37 |
| 8.       | Compliance                                     | 37 |
| 9.       | Contact                                        | 37 |
| Series > | (POW-8AX-CV-U                                  |    |

3

# List of Tables

| Table 1. Checklist Items                       | 6  |
|------------------------------------------------|----|
| Table 2. Specification Conditions              | 7  |
| Table 3. DAC Voltage Performance Specification | 11 |
| Table 5. Troubleshooting                       | 36 |

# List of Figures

| Figure 1. XPOW-8AX-CV-U System Diagram | 6  |
|----------------------------------------|----|
| Figure 2. Product Dimension            | 8  |
| Figure 3. Front, Back and Top View     | 9  |
| Figure 4. GUI                          | 15 |

# 1. Introduction

Nicslab XPOW-8AX-CV-U is a versatile multichannel source measurement system. The XPOW-8AX-CV-U supports multiple voltage/current sourcing and voltage/current measurement. The system is suitable for sourcing and measuring low-power applications from simple electronic circuits to complex photonic integrated circuits.

The XPOW-8AX-CV-U provides independent 8 channels controlled by Graphical User Interface (GUI) and Standard Commands for Programmable Instruments (SCPI) through Universal Serial Bus (USB) port. The system has one mode: Constant Voltage (CV) ranging from unipolar 0 - 5 Volt, 0 - 10 Volt, 0 - 20 Volt and 0 - 36 Volt (please check your feature selection).

The features for XPOW-8AX-CV-U in details are:

- 16-bits voltage control.
- Enable voltage range configuration through software (technology that enables the user to select the output range with software without lose control of the high-resolution feature).
- Flexible output configuration with 16-bit resolution unipolar 0 5 V, 0 10 V, 0 20 V and 0 36 V (*Premium Upgrade*).
- Intuitive GUI.
- Measurement time for single channel: 393 ms.
- The maximum power output per channel is 10 watts.
- Real time voltage and current reading.
- Save function to create database.
- Upload function to generate the registrable voltage and current pattern.
- Sequence function for continuous voltage and current.
- Short circuits protection.
- SCPI command support (Python, Matlab, C#, and LabVIEW).
- SCPI Library (Premium Upgrade).
- Windows, Mac, and Linux support.
- USB port with USB line termination, filtering, and electrostatic discharge (ESD) protection.
- Bi-directional electromagnetic interference (EMI) filtering prevents noise from entering/leaving the system.
- Compliance with IEC61000-4-2 ESD Protection for USB Port.

The XPOW-8AX-CV-U needs to be connected with direct current (DC) Power first then you can plug into the Device-Under-Test (DUT). The voltage/current can be controlled through GUI or SCPI command via USB port.

The system diagram is as follow:



.

Figure 1. XPOW-8AX-CV-U System Diagram

The package should include the following items:

| Table 1. Checklist Items |
|--------------------------|
|--------------------------|

| No | Item                                                                                                                                                                                                                                 | Qty (pc) | Checklist |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 1  | XPOW-8AX-CV-U Box                                                                                                                                                                                                                    | 1        |           |
| 2  | DC power line cord (Red, Black)                                                                                                                                                                                                      | 2        |           |
| 3  | USB 3.0 type B                                                                                                                                                                                                                       | 1        |           |
| 4  | USB flash disk                                                                                                                                                                                                                       | 1        |           |
| 5  | Inside USB flash disk:<br>a. GUI<br>b. Specification & Manual<br>c. Test Report<br>d. Serial key (Upgrade)<br>e. XPOW key<br>f. Software Library (Premium)<br>g. Comma-separated values<br>(CSV) template (upload, demo<br>sequence) | 1        |           |

# 2. Hardware

# **Specification Conditions**

The operating and measurement conditions are under the following conditions:

Table 2. Specification Conditions

| ltems                | Conditions                                                                                     |
|----------------------|------------------------------------------------------------------------------------------------|
| Room Temperature     | 0 ~ 40 °C                                                                                      |
| Humidity             | 5 ~ 80 % (No Condensing)                                                                       |
| Power Supply Input   | DC Supply Max 36 V (potential at red & <b>black</b><br>DC in).<br>Required headroom 1.4 – 2 V. |
| Waterproof/Dustproof | To be operated under room condition                                                            |
| Calibration period   | 2 years                                                                                        |

# Hardware Requirement

The requirements for the PC/Laptop to be used for this product installation are:

- Resolution Min. 1024 x 768 pixel
- Hard disk Min. 500 MB of available free space (32-bit and 64-bit operating system)
- USB Port USB 2.0
- RAM Min. 2 GB
- CPU 2.4 GHz or faster

# **Box Descriptions**

#### **Box Descriptions**

The box size is 106 (W) x 164 (L) x 61.1 (H) mm, as the pictures below:



Figure 2. Product Dimension

The details of front, back and top panel of the box are described below:



Figure 3. Front, Back and Top View

#### Note:

| A1 | Power Switch               | Turns the instrument on or off.                                                             |
|----|----------------------------|---------------------------------------------------------------------------------------------|
| A2 | Pin Output (8<br>channels) | To connect to Device Under Test (DUT) using cable.                                          |
| A3 | Reset Button               | To reset the system when the initialization failed, system freeze or finding COM port.      |
| A4 | Indicator Light            | Red and Yellow -> Power Indicator.                                                          |
|    |                            | Green -> Port Connection Indicator.                                                         |
|    |                            | Blue -> Serial Transfer Data Active.                                                        |
| A5 | Input DC Max 36 V          | Caution                                                                                     |
|    |                            | Please follow the safety notice on your DC power supply. The DC input is no more than 36 V. |
|    |                            | <b>Black</b> cable inserts to negative terminal (0 V)                                       |
|    |                            | Red cable inserts to positive terminal (36 V)                                               |
| A6 | GPIO                       | You may use for external control and monitoring direct to microprocessor.                   |
| A7 | USB Connector              | Use the cable type min. USB 2.0.                                                            |
| A8 | Airflow                    | For air circulation inside the box.                                                         |

# XPOW-8AX-CV-U Specifications

The performance specifications of the Digital Analog Converter (DAC) <u>voltage</u> are listed in Table 3 below:

| No  | Parameter                          | Min   | Тур     | Max      | Unit             | Test conditions/comments                                                                                                                                                    |
|-----|------------------------------------|-------|---------|----------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Resolution                         | 16    |         |          | Bits             |                                                                                                                                                                             |
| 2   | Integral nonlinearity (INL)        | -1    | ± 0.5   | 1        | LSB              | All ranges, except 0 to 40                                                                                                                                                  |
| 3   | Differential Nonlinearity<br>(DNL) | -1    | ± 0.5   | 1        | LSB              | Specified 16-bit monotonic                                                                                                                                                  |
| 4   | Total unadjusted error             | -0.1  | ± 0.01  | 0.1      | %FSR             | All ranges                                                                                                                                                                  |
| 5   | Unipolar offset error              | -0.03 | ± 0.015 | 0.03     | %FSR             | All unipolar ranges                                                                                                                                                         |
| 6   | Unipolar zero-code error           | 0     | 0.04    | 0.1      | %FSR             | All unipolar ranges                                                                                                                                                         |
| 7   | Full-scale error                   | -0.2  | ± 0.075 | ±<br>0.2 | %FSR             | All ranges                                                                                                                                                                  |
| 8   | Gain error                         | -0.1  | ± 0.02  | 0.1      | %FSR             | All ranges                                                                                                                                                                  |
| 9   | Unipolar offset error drift        |       | ±2      |          | ppm of<br>FSR/°C | All unipolar ranges                                                                                                                                                         |
| 10  | Gain error drift                   |       | ±2      |          | ppm of<br>FSR/°C | All ranges                                                                                                                                                                  |
| 11  | Output voltage drift over time     |       | 5       |          | Ppm of<br>FSR    | $T_A = 40 \text{ °C}$ , Full-scale code, 1900<br>hours                                                                                                                      |
| DYN | AMIC PERFORMANCE                   |       |         |          |                  |                                                                                                                                                                             |
| 12  | Output Voltage Settling<br>Time    |       | 12      |          | μs               | $\frac{1}{4}$ to $\frac{3}{4}$ and $\frac{3}{4}$ to $\frac{1}{4}$ scale setting<br>time to ± 1 LSB, ±10 V range, R <sub>L</sub> = 5<br>k $\Omega$ , C <sub>L</sub> = 200 pF |
| 13  | Slew Rate                          |       | 4       |          | V/µs             | All range except 0 to 5 V                                                                                                                                                   |
| 14  | Power-on glitch magnitude          |       | 0.3     |          | V                | Power-down to active DAC output,<br>Midscale code, $R_L = 5 k\Omega$ , $C_L = 200$ pF                                                                                       |
| 15  | Output noise                       |       | 15      |          | µV р-р           | 0.1 Hz to 10 Hz, Midscale code, 0 to 5 V range                                                                                                                              |
| 16  | Output noise density               |       | 78      |          | nV/\Hz           | 1 kHz, Midscale code, 0 to 5 V range                                                                                                                                        |
| 17  | AC PSRR                            |       | 1       |          | LSB/V            | Midscale code, frequency = $60 \text{ Hz}$ ,<br>amplitude 200 mVpp superimposed<br>on V <sub>DD</sub> , V <sub>CC</sub> or V <sub>SS</sub>                                  |
| 18  | DC PSRR                            |       | 1       |          | LSB/V            |                                                                                                                                                                             |
| 19  | Code change glitch<br>impulse      |       | 4       |          | nV-s             | 1 LSB change around the major carrier, 0 to 5 V range                                                                                                                       |
| 20  | Channel to Channel AC<br>crosstalk |       | 4       |          | nV-s             | 0 to 5 V range. Measured channel at<br>midscale. Full-scale swing on all<br>other channels.                                                                                 |
| 21  | Channel to Channel DC<br>crosstalk |       | 0.25    |          | LSB              | 0 to 5 V range. Measured channel at midscale. All other channels at full-scale.                                                                                             |
| 22  | Digital feedthrough                |       | 1       |          | nV-s             | 0 to 5 V range, Midscale code, F <sub>SCLK</sub><br>= 1 MHz                                                                                                                 |

Table 3. DAC Voltage Performance Specification

#### Hardware Installation

This section describes how to install XPOW-8AX-CV-U and how to connect your Device Under Test (DUT) to the output terminals.

The steps are as follow:

- 1. Precondition step: connect to the DC power supply (max 36 V). Make certain that DC power supply is always 'ON'.
- 2. Connect a USB cable to your workstation (PC/Laptop) via a USB port.
- 3. Connect XPOW output to your Device Under Test (DUT).
- 4. Install the software/GUI (see the Software Installation section) from the flash disk, Dropbox link, and <u>Nicslab website</u>.
- 5. After you install the software/GUI, then the XPOW is ready to use by switching the ON/OFF button at the front panel.

# 3. Software and Graphical User Interface (GUI)

# Software Requirement

The GUI software is suitable with the following operating systems:

- Windows<sup>®</sup> 7 (32-bit, 64-bit).
- Windows<sup>®</sup> 10 (32-bit, 64-bit).
- Windows<sup>®</sup> 11 (64-bit).
- macOS Big Sur.
- Linux Ubuntu

#### Software Installation

The first step is to copy the GUI file into your hard disk. For Mac, both the GUI and Arduino must be copied inside the 'Application' folder.

Double click the icon below to install the GUI.



At the end step of the installation, check a 'Create a desktop shortcut'.

| Setup - GUI_XPOW version 4.0.1.9                                       |               | -               |          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------|---------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select Additional Tasks<br>Which additional tasks should be performed? |               |                 |          | (In the second s |
| Select the additional tasks you would like Setup to perform while      | installing GL | JI_XPOW, then o | lick Nex | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Additional shortcuts:                                                  |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Create a desktop shortcut                                              |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |               |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | <u>B</u> ack  | Next            | (        | Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Double click the executable GUI icon (as below) on your desktop to launch the GUI.



# How to Detect Which COM Is Used (Windows only)

1. Click Start 🖪. Find 'Device Manager'.



2. Find Ports (COM & LPT) in Device Manager.

> 🛱 Ports (COM & LPT)

3. When XPOW is connected to the computer then there will be an Arduino Leonardo port and the COM's number. From the image below the COM number is 8.



#### Graphical User Interface (GUI)

Start the XPOW by pressing the ON button, then you can control it by GUI, the display details are on the next page.

Note: You can also launch the GUI through programming languages such as Python, C#, LabVIEW, and Java.



Figure 4. GUI

#### Note:

| Callout | Description                                                                                                                                                                                                                                                                                                          |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B1      | ON/OFF Switch                                                                                                                                                                                                                                                                                                        |
| B2      | Status of connection                                                                                                                                                                                                                                                                                                 |
| B3      | Increment Settings                                                                                                                                                                                                                                                                                                   |
| B4      | Save File Button - Premium Feature                                                                                                                                                                                                                                                                                   |
| B5      | Upload File Button - Premium Feature                                                                                                                                                                                                                                                                                 |
| B6      | Auto Feature Sequence: Upload Table Button I CV Mode - Premium Feature                                                                                                                                                                                                                                               |
| B7      | Auto Feature: Run Button CV Mode - Premium Feature                                                                                                                                                                                                                                                                   |
| B8      | Name of the Sequence - Premium Feature                                                                                                                                                                                                                                                                               |
| B9      | Record Data Button - Premium Feature                                                                                                                                                                                                                                                                                 |
| B10     | <ul> <li>Setting for: <ol> <li>Set Limit voltage and current values - Premium Feature</li> <li>V Range (16-bit precision for every range of voltages: 5, 10, 20, 36 V)</li> <li>- Premium Feature</li> </ol> </li> <li>Set the Reading speed of Voltage and Current (Fast, Medium, Slow) - Premium Feature</li></ul> |
| B11     | ON/OFF Button for the current Tab                                                                                                                                                                                                                                                                                    |
| B12     | Enable/Disable (Lock) Channel Controller for all channels in the current tab                                                                                                                                                                                                                                         |
| B13     | Text area to set the voltage for all channels in the current tab                                                                                                                                                                                                                                                     |
| B14     | Slider to set the voltage for all channels in the current tab                                                                                                                                                                                                                                                        |
| B15     | Upgrade Button                                                                                                                                                                                                                                                                                                       |
| B16     | Notes - Premium Feature                                                                                                                                                                                                                                                                                              |
| B17     | Voltage Settings Slider                                                                                                                                                                                                                                                                                              |
| B18     | Voltage Value Based on Increment Setting                                                                                                                                                                                                                                                                             |
| B19     | Current Value                                                                                                                                                                                                                                                                                                        |
| B20     | Voltage Value                                                                                                                                                                                                                                                                                                        |
| B21     | Enable/Disable (Lock) Channel Controller                                                                                                                                                                                                                                                                             |
| B22     | Number of channels                                                                                                                                                                                                                                                                                                   |
| B23     | ON/OFF Button per Channel                                                                                                                                                                                                                                                                                            |
| B24     | Tab Channel                                                                                                                                                                                                                                                                                                          |

# Initializing the GUI

This section shows how to initialize the GUI:

- 1. Launch the GUI by double-clicking the executable GUI icon.
- 2. When you launch the GUI for the first time, input the 'XPOW Key' and choose the correct 'COM' port.



3. Press the switch button (B1) on GUI to connect it with the XPOW.



4. Turn ON (B23) on each channel to the input voltage and current values.



#### Premium Upgrade

This section shows how to upgrade the GUI to enable advanced features.

1. Press the upgrade button at the top right corner of the window



2. After the upgrade window opened, input the Premium Upgrade Key.



3. If your Premium Upgrade Key is valid, you will get a message that indicates a successful upgrade.



4. You can use several features that were previously locked.

| XPOW-BAX-CV-U      |       |         |             |         |      |        |    |       |   |                                  | - | ð X |
|--------------------|-------|---------|-------------|---------|------|--------|----|-------|---|----------------------------------|---|-----|
| nicslab            | XPOW- | SAX-C   | <b>/-</b> U |         |      |        |    |       |   |                                  |   |     |
| Status : Connected | sw    | Channel |             | Voltage |      | Curre  |    |       |   | Voltage Settings                 |   |     |
| Value Increment    | œ     |         | ٥           | 00.000  |      | 000.00 |    | 0.00  |   |                                  |   | _   |
|                    | 8     |         |             | 00.000  |      | 000.00 |    | 0.00  |   |                                  |   | _   |
|                    | 8     |         |             | 00.000  |      | 000.00 | mA | 0.00  |   |                                  |   | _   |
|                    |       |         |             | 00.000  |      | 000.00 |    | 0.00  |   |                                  |   | _   |
|                    | OF    |         |             | 00.000  |      | 000.00 | mA | 0.00  |   |                                  |   | _   |
|                    | 8     |         | D           | 00.000  |      | 000.00 |    | 0.00  |   |                                  |   | _   |
|                    | œ     |         |             | 00.000  |      | 000.00 | mA | 0.00  | 0 |                                  |   |     |
|                    |       |         |             | 00.000  |      | 000.00 | mA | .0.90 |   |                                  |   | _   |
|                    | OF    | 1-8     | 🗌 vota      | ge 🚺    | .004 |        |    |       |   | Set for All Channels in this Tab | - |     |

| XPOW-8AX-CV-U      |      |         |        |          |                       |             |                                    | o x         |
|--------------------|------|---------|--------|----------|-----------------------|-------------|------------------------------------|-------------|
| nicslab            | XPOW | -8AX-C  | V-U    |          |                       |             |                                    |             |
| $\bigcirc$         | . sw | Chennel | Lock   | Voltage  | Current               |             | Volkeys Skittings                  | Notes       |
| Status : Connected |      |         |        |          |                       |             | m                                  |             |
| Value Increment    |      |         |        | 00.000 V | 000.00 ma             |             |                                    |             |
| O 0.001            | œ    |         |        | 00.000 V | 000.00 i m#           | 0           |                                    |             |
| (SAVE) (UPLOAD)    |      |         |        | 00.000 V | 000.00 m <sup>a</sup> | <b>53</b> 0 |                                    |             |
| Auto Mode          | œ    |         |        | 00.000 V | 000.00 m/             | 0           |                                    | _           |
|                    | œ    |         |        | 00.000 V | 000.00 m4             | 0           |                                    |             |
| RUN                | œ    |         | 0      | 00.000 V | 000.00 m4             | 0           |                                    | (           |
| Sequence :         | Œ    |         |        | 00.000 V | 000.00 m4             | 0           |                                    | ( <b></b> ) |
| 1 🕃 second 🔹       | Œ    |         |        | 00.000 V | 600.00 m <sup>a</sup> | <b>1</b> 0  |                                    | ()          |
| RECORD             |      |         |        |          |                       |             | - Set for All Channels in this Tab |             |
| SETTINGS           | OF   | 1 - 8   | 🗌 volt | age 0    |                       |             |                                    |             |

The next few sections are the advanced features that are enabled after upgrading the GUI.

# Constant Voltage (CV) Mode

This section shows how to do CV mode according to your aim:

To do CV mode, you need to adjust the voltage value on (B18) or slider (B17).

Important note: When you input manually the values, always press 'Enter'.



# Value Increment Setting

In this setting, the value of the voltage and current can be incrementally changed from 0.001 to 1. Click the arrow to increase and decrease the value increment (B3).



# Save and Upload

The CSV file (.csv) resulted from the Save function can be uploaded again through the Upload button (B5). You may also create your own CSV file of voltage and current and upload it later.

1. To save the configuration, click the 'Save' button (B4).



2. Select a directory and write the file name.



- 3. The file will be saved as '.csv file'.
- 4. Check the (.csv) file that you have saved.

|       | a 5-                              |                  |       | 8chSa  | ve - Excel |                                                                                                  | <u>A</u> n                 | iicslab 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8) E                       |                            | 0       |        |
|-------|-----------------------------------|------------------|-------|--------|------------|--------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------|--------|
|       | ile Ho                            | me Insert        | Page  | Layout | Formulas   | Data                                                                                             | Review                     | View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Help 💡                     | Tell me                    | 유 Shai  | re     |
| Get a | Get<br>Ita ~ III<br>& Transform I | Refrest<br>All ~ | h Da  | 2↓ A   | ort Filte  | н<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Text to<br>Columns<br>Data | III →<br>III →<br>IIII →<br>III →<br>III →<br>III →<br>III →<br>III →<br>III →<br>III →<br>III →<br>III →<br>III<br>→<br>III →<br>III →<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>III<br>→<br>I<br>→<br>I<br>→<br>I<br>→<br>I<br>→<br>I<br>→<br>I<br>→<br>→ | What-If<br>Analysis<br>For | Forecast<br>Sheet<br>ecast | Outline |        |
| A1    |                                   | • E 2            | × v   | $f_x$  | Voltage    | Ð                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         | *      |
|       | A                                 | В                | C     |        | D          | E                                                                                                | F                          | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н                          | 1                          | J       |        |
| 1     | Voltage                           | Current          | Notes |        |            |                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         |        |
| 2     | 1.100                             | 200.000          |       |        |            |                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         |        |
| 3     | 2.200                             | 200.000          |       |        |            |                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         |        |
| 4     | 3.300                             | 200.000          |       |        |            |                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         |        |
| 5     | 4.400                             | 200.000          |       |        |            |                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         |        |
| 6     | 5.500                             | 200.000          |       |        |            |                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         |        |
| 7     | 6.600                             | 200.000          |       |        |            |                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         |        |
| 8     | 7.700                             | 200.000          |       |        |            |                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         |        |
| 9     | 8.800                             | 200.000          |       |        |            |                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |         |        |
| 10    | E E                               | 8chSave          | +     |        |            |                                                                                                  |                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |         | ۳<br>۲ |
| Rea   | dv                                |                  |       |        |            |                                                                                                  | EEB                        | (E) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | II                         |                            | - + 100 | 0%     |

The voltage, current, and notes are recorded.

5. To upload the configuration, click the 'Upload' button (B5).



6. Choose and open the intended file.



7. Then, it will upload the configuration like the previous configuration.



# Sequence Automation

Sequence is the setting that automates the determined values of current (mA) or voltage (V) given the certain Delay Time (in millisecond).

 The template of the sequence is given, then you need to input your intended values of CV Sequence (from 0 to 36 V) and Delay Time (in millisecond). Set the delay time to more than 2 seconds to have more accurate values. To have a faster response (switching time) you can set via SCPI command (see Operating XPOW through SCPI command).

|    | Α          | В     | С     | D     | E     | F     | G     | Н     | 1     | J        |    |
|----|------------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----|
| 1  |            | Seq 1 | Seq 2 | Seq 3 | Seq 4 | Seq 5 | Seq 6 | Seq 7 | Seq 8 | Note     |    |
| 2  | Delay Time | 6000  | 5478  | 4912  | 3409  | 4213  | 5902  | 6012  |       |          |    |
| 3  | Channel 1  | 5     | 50    | 0     | 100   | 150   | 150   | 0     | 300   | Fan1     |    |
| 4  | Channel 2  | 10    | 50    | 0     | 100   | 160   | 150   | 0     | 300   | Fan2     |    |
| 5  | Channel 3  | 15    | 50    | 0     | 100   | 170   | 150   | 0     | 300   | Motor1   |    |
| 6  | Channel 4  | 20    | 50    | 0     | 100   | 180   | 150   | 0     | 300   | Motor2   | (B |
| 7  | Channel 5  | 25    | 50    | 0     | 100   | 190   | 150   | 0     | 300   | Sensor1  | e  |
| 8  | Channel 6  | 30    | 50    | 0     | 100   | 200   | 150   | 0     | 300   | Sensor2  |    |
| 9  | Channel 7  | 35    | 50    | 0     | 100   | 210   | 150   | 0     | 300   | Sensor3  |    |
| 10 | Channel 8  | 40    | 50    | 0     | 100   | 220   | 150   | 0     | 300   | Not Used |    |

Note:

- A. Template given for CV sequences.
- B. Input your intended values according to the modes (CV: 0 36.V)
- 2. Choose the CV Sequence (B6). When you click, for example, if you want to use a CV sequence, you need to open the corresponding CSV sequence file.
- 3. After uploading, choose sequence mode by clicking 'Run' (B7). It will run CV Sequence depends on the .csv file that you uploaded before.

# Record

'Record' (B9) keeps data on voltage and current values. You can choose how often the data is stored in a unit of time. The default value is the data will be stored each one second. The record starts by the time you click the Record button and finish when you click again the same button.



Click the same button to stop recording. After that, put the file in any directory

| - → ~ ↑ 📑 → T                                           | his PC > Documents >    | ~ C    | Search Documents | م         |
|---------------------------------------------------------|-------------------------|--------|------------------|-----------|
| Organize - New folder                                   |                         |        |                  | ≣ • (     |
| This PC                                                 | Name                    | Status | Date modified    | Туре      |
| Desktop                                                 | 🚞 Adobe                 |        | 21/09/2021 8:33  | File fold |
| Documents                                               | 📒 Arduino               |        | 18/03/2022 14:17 | File fold |
| <ul> <li>Uownloads</li> <li>Music</li> </ul>            | Blackmagic Design       |        | 08/10/2021 16:19 | File fold |
| Pictures                                                | 📒 Bluetooth Folder      |        | 15/09/2022 16:42 | File fold |
| Videos                                                  | Corel                   |        | 21/11/2021 19:05 | File fol  |
| <ul> <li>Windows-SSD (C:)</li> <li>Data (D:)</li> </ul> | Custom Office Templates |        | 28/09/2021 13:58 | File fold |
| File name: record8c                                     |                         |        |                  |           |
| Save as type: CSV Files (*                              | .csv)                   |        |                  |           |

This is the output of the recorded file

|       | <b>ئ</b> - د |                 |            |         |            |            |       |          | ecord8c.c    | :sv - Exc |              |            |               | nic       | slab 4 🐽       |                 | - (        | > x       |
|-------|--------------|-----------------|------------|---------|------------|------------|-------|----------|--------------|-----------|--------------|------------|---------------|-----------|----------------|-----------------|------------|-----------|
| File  | Home         | Insert          | Page Layo  | out For | mulas Data | Review     | View  | Add-ins  | Help 🖓       |           | what you wan |            |               |           |                |                 |            | p         |
| Past  | ж<br>П       | Calibri         | - [*       | n -     |            | =          | >- {  | Gen      | eral         | -         | Conditional  | Format as  | Cell          | Ensert    | - Σ -<br>- Ψ - | AZ▼<br>Sort & F | P<br>ind & |           |
| 242   |              | 2.0.0           | R 11440    |         | - I -      |            | a     |          | 37 5         |           | Formatting   | Table *    | Styles -      | Format    | * <b>*</b> *   | Filter - Se     | elect ~    |           |
| Clipt | ooard 🕬      |                 | Font       |         | 15         | Alignm     | ent   | - 10     | Number       | 15        |              | Styles     |               | Cells     |                | Editing         |            | ^         |
| A1    |              | EX              | × 1        | Tim     | e Stamp    |            |       |          |              |           |              |            |               |           |                |                 |            | ~         |
| 4     | A            | В               | C          | D       | E          | F          | G     | н        | 1.1          | J         | к            | L          | м             | N         | 0              | Р               | Q          | R         |
| 1 T   | ime Stamp    | Voltage[1       | Current[1] | Notes   | Voltage[2  | Current[2] | Notes | Voltage[ | 3] Current[3 | Notes     | Voltage[4]   | Current[4] | Notes         | Voltage[5 | [] Current[5]  | Notes           | Voltage[   | 6] Currer |
| 2     | 14:53:29     | 6.153 V         | 50.8 mA    | Fan1    | 6.276 V    | 50.77 mA   | Fan2  | 6.226 V  | 50.75 mA     | Motor1    | 6.106 V      | 51.62 mA   | Motor2        | 5.944 V   | 50.62 mA       | Sensor1         | 6.095 V    | 50.7 m    |
| 3     | 14:53:30     | 6.153 V         | 50.8 mA    | Fan1    | 6.276 V    | 50.77 mA   | Fan2  | 6.226 V  | 50.75 mA     | Motor1    | 6.106 V      | 51.62 mA   | Motor2        | 5.944 V   | 50.62 mA       | Sensor1         | 6.095 V    | 50.72     |
| 4     | 14:53:31     | 6.153 V         | 50.8 mA    | Fan1    | 6.276 V    | 50.77 mA   | Fan2  | 6.226 V  | 50.75 mA     | Motor1    | 6.106 V      | 51.62 mA   | Motor2        | 5.944 V   | 50.62 mA       | Sensor1         | 6.095 V    | 50.7 n    |
| 5     | 14:53:32     | 6.153 V         | 50.8 mA    | Fan1    | 6.276 V    | 50.77 mA   | Fan2  | 6.226 V  | 50.75 mA     | Motor1    | 6.106 V      | 51.62 mA   | Motor2        | 5.944 V   | 50.62 mA       | Sensor1         | 6.095 V    | 50.7 n    |
| 6     | 14:53:33     | 2.987 V         | 24.92 mA   | Fan1    | 6.276 V    | 50.77 mA   | Fan2  | 6.226 V  | 50.75 mA     | Motor1    | 6.106 V      | 51.62 mA   | Motor2        | 5.944 V   | 50.62 mA       | Sensor1         | 6.095 V    | 50.7 n    |
| 7     | 14:53:34     | 0.959 V         | 7.85 mA    | Fan1    | 2.609 V    | 21.12 mA   | Fan2  | 6.225 V  | 50.75 mA     | Motor1    | 6.106 V      | 51.62 mA   | Motor2        | 5.944 V   | 50.62 mA       | Sensor1         | 6.095 V    | 50.7 n    |
| 8     | 14:53:35     | 0.959 V         | 7.85 mA    | Fan1    | 1.93 V     | 15.52 mA   | Fan2  | 2.9 V    | 23.6 mA      | Motor1    | 3.87 V       | 32.7 mA    | Motor2        | 5.293 V   | 45.15 mA       | Sensor1         | 6.095 V    | 50.7 m    |
| 9     | 14:53:36     | 0.96 V          | 7.85 mA    | Fan1    | 1.93 V     | 15.55 mA   | Fan2  | 2.9 V    | 23.6 mA      | Motor1    | 3.87 V       | 32.7 mA    | Motor2        | 4.819 V   | 41.02 mA       | Sensor1         | 5.818 V    | 48.42     |
| 10    | 14:53:37     | 0.959 V         | 7.85 mA    | Fan1    | 1.93 V     | 15.55 mA   | Fan2  | 2.9 V    | 23.6 mA      | Motor1    | 3.87 V       | 32.7 mA    | Motor2        | 4.819 V   | 41.02 mA       | Sensor1         | 5.818 V    | 48.42     |
| 11    | 14:53:38     | 0.959 V         | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.9 V    | 23.6 mA      | Motor1    | 3.87 V       | 32.7 mA    | Motor2        | 4.819 V   | 41.02 mA       | Sensor1         | 5.818 V    | 48.42     |
| 12    | 14:53:39     | 0.96 V          | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.901 V  | 23.6 mA      | Motor1    | 3.87 V       | 32.7 mA    | Motor2        | 4.819 V   | 41.02 mA       | Sensor1         | 5.818 V    | 48.42     |
| 13    | 14:53:40     | 0.96 V          | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.9 V    | 23.6 mA      | Motor1    | 3.87 V       | 32.7 mA    | Motor2        | 4.82 V    | 41.02 mA       | Sensor1         | 5.818 V    | 48.42     |
| 14    | 14:53:41     | 0.96 V          | 7.85 mA    | Fan1    | 1.93 V     | 15.55 mA   | Fan2  | 2.901 V  | 23.6 mA      | Motor1    | 3.871 V      | 32.7 mA    | Motor2        | 4.819 V   | 41.02 mA       | Sensor1         | 5.818 V    | 48.42     |
| 15    | 14:53:42     | 0.959 V         | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.901 V  | 23.6 mA      | Motor1    | 3.871 V      | 32.7 mA    | Motor2        | 4.82 V    | 41.05 mA       | Sensor1         | 5.818 V    | 48.42     |
| 16    | 14:53:43     | 0.959 V         | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.9 V    | 23.6 mA      | Motor1    | 3.87 V       | 32.72 mA   | Motor2        | 4.82 V    | 41.02 mA       | Sensor1         | 5.818 V    | 48.42     |
| 17    | 14:53:44     | 0.96 V          | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.901 V  | 23.6 mA      | Motor1    | 3.871 V      | 32.7 mA    | Motor2        | 4.82 V    | 41.05 mA       | Sensor1         | 5.818 V    | 48.42     |
| 18    | 14:53:45     | 0.96 V          | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.901 V  | 23.6 mA      | Motor1    | 3.871 V      | 32.72 mA   | Motor2        | 4.82 V    | 41.05 mA       | Sensor1         | 5.818 V    | 48.42     |
| 19    | 14:53:46     | 0.96 V          | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.901 V  | 23.6 mA      | Motor1    | 3.871 V      | 32.72 mA   | Motor2        | 4.82 V    | 41.05 mA       | Sensor1         | 5.818 V    | 48.42     |
| 20    | 14:53:47     | 0.959 V         | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.901 V  | 23.6 mA      | Motor1    | 3.871 V      | 32.72 mA   | Motor2        | 4.82 V    | 41.05 mA       | Sensor1         | 5.818 V    | 48.42     |
| 21    | 14:53:48     | 0.959 V         | 7.85 mA    | Fan1    | 1.931 V    | 15.55 mA   | Fan2  | 2.901 V  | 23.6 mA      | Motor1    | 3.871 V      | 32.72 mA   | Motor2        | 4.82 V    | 41.05 mA       | Sensor1         | 5.818 V    | 48.42     |
|       | re           | cord8c          | (+)        |         |            |            |       |          |              |           | - 4          |            |               |           |                |                 |            | •         |
| Ready | (and Access  | sibility: Unava | ailable    |         |            |            |       |          |              |           |              | Dist       | alay Settings | III       | 面面             |                 | 1          | + 100%    |

Series XPOW-8AX-CV-U

# Settings

Click the 'Settings' button (B10).



The 'Settings' feature consists of:

• Set voltage limit to limit the control voltage (B17, B18, and B20).



Important note: When you input the values, always press 'Enter'.

• Set range for voltage values where you can choose the voltage range to limit the voltage values. The range of voltages are 5 V, 10 V, 20 V and 36 V. Each range has 16-bit precision.



• Set reading speed for current and voltage. There are three options which is Fast, Medium, and Slow. Faster options can make conversion time smaller but the results noisier.



# 4. Operating XPOW through SCPI command

This section set guidelines to help you develop a program for any language that suits you best. The example is written in Python.

# Python Installation (Example)

Please follow the steps below for dynamic programming using the SCPI command through Python via serial.

The following Python version and packages need to be installed:

- 1. Python 2.7 or Python 3.X (download and install the latest version from <u>www.python.org</u>). \*Tested with Python 3.7.
- 2. PyCharm 2017.3.4 or the latest version (download and install the latest version from <u>https://www.jetbrains.com/pycharm/).</u>

| 1 + 00 + 00+1<br> | A Show-BAX-CCvCV Dy                              |                                                   |  |
|-------------------|--------------------------------------------------|---------------------------------------------------|--|
| ternal Libraries  | No Python interpreter configured for the project |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   | 75 .                                             |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  | COMMUNITY 20123                                   |  |
|                   |                                                  | bother 2017 2 4 / remark filles                   |  |
|                   | 29 SerialData = serial.Seria                     | Build #PC-173.4674.37, built on March 6, 2018     |  |
|                   |                                                  | JBE-180, 152 selecte 1024 bits undef              |  |
|                   |                                                  | JVM: OpenJDK 64-Bit Server VM by JetBrains s.r.o  |  |
|                   |                                                  | Powered by open-source software                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  | bit values                                        |  |
|                   |                                                  | THE DRIVE TO DEVELOP                              |  |
|                   |                                                  | © 2000–2020 JetBrains s.r.o. All rights reserved. |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |
|                   |                                                  |                                                   |  |

# Run Python Code (Example)

To run the Python code please follow the steps below:

1. Open PyCharm software and open file example (e.g XPOW-8AX-CV-U.py)

 Configure the Python interpreter see figure below by clicking Configure Python Interpreter link on the top right-hand corner of the code, or in File >> Settings >> Project Interpreter in Windows or Preference >> Project Interpreter in Mac. Select Python 2.7 or Python 3.X in the Project Interpreter list.

|                                  | Project: Xpow-8AX-CCvCV.py >     | Project Interpreter 🛛 🗣 For current proj |         |   |
|----------------------------------|----------------------------------|------------------------------------------|---------|---|
| Appearance & Behavior     Kevmap | Project Interpreter: 📑 Python 2. |                                          |         | • |
| Editor                           | Package                          | Version                                  |         |   |
| Obveine                          | PyQt4-windows-whl                |                                          |         |   |
| riugins                          | PyVAML                           |                                          |         |   |
| Version Control                  |                                  |                                          |         |   |
| Project: Xpow-8AX-CCvCV.py       | bistiming                        |                                          | 0.4.0   |   |
|                                  |                                  |                                          |         |   |
|                                  |                                  |                                          |         |   |
| Project Structure 👘              |                                  |                                          |         |   |
| Build, Execution, Deployment     |                                  |                                          |         |   |
| Languages & Frameworks           |                                  |                                          |         |   |
|                                  |                                  |                                          |         |   |
| Tools                            |                                  |                                          |         |   |
|                                  | pySerialMonitor                  |                                          |         |   |
|                                  |                                  |                                          |         |   |
|                                  |                                  |                                          |         |   |
|                                  | qtgui                            |                                          |         |   |
|                                  |                                  |                                          | .0.0.97 |   |
|                                  | serial-interface                 |                                          |         |   |
|                                  | serialtime                       |                                          |         |   |
|                                  |                                  |                                          |         |   |
|                                  |                                  |                                          |         |   |
|                                  |                                  |                                          |         |   |
|                                  | wsgiref                          |                                          |         |   |

3. Install additional packages: enum34, pip, pyserial, setup tools by clicking the "+" button, then search and install all the packages.

| Q* pyserial                                                                 |                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| cypyserialize<br>pySerialMonitor<br>pyserial<br>pyserialize<br>pyserializer | Perception     Python Serial Port Extension     Version     3.4     Autrer     Chris Liechti     mailto cilechti@amx.net     https://oithub.com/pyserial/pyserial |  |
|                                                                             |                                                                                                                                                                   |  |
|                                                                             | Options                                                                                                                                                           |  |

4. Select Python Configuration and choose the file name.

Series XPOW-8AX-CV-U

5. Run the file by clicking the green arrow button on the top right corner to test the XPOW (Please refer to the code and SCPI commands references)

|                                           | 0 ¢   \$- 1- |                                                                                                                                                 |                                                                                                                   |                                                                                              |  |
|-------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| y Xpow-BAX-CCvCV.py<br>External Libraries |              | import serial # Import the serial library<br>import time<br>##                                                                                  |                                                                                                                   |                                                                                              |  |
|                                           |              | <pre>from serial.bools import list_ports from time import sleep my port name = list(list ports.grep("2341:8036"))[0][0] # VID:PID for XFG</pre> | Copy Reference<br>Baste<br>Paste from History<br>Paste Simple<br>Column Selection Mode<br>Find Usages<br>Befactor | Ctrl+Alt+Shift+C<br>Ctrl+V<br>Ctrl+Shift+V<br>Ctrl+Alt+Shift+V<br>Alt+Shift+Insert<br>Alt+F7 |  |
|                                           |              |                                                                                                                                                 | Felding<br>Go To<br>Generate<br>Bun "Xpow-BAX-CCXCV"<br>& Sebug Xpow-BAX-CCXCV"<br>Save Xpow-BAX-CCXCV            | Alt+Inset<br>Ctd-Shit-F10                                                                    |  |
|                                           |              |                                                                                                                                                 | Local History<br>Execute Line in Console<br>Run File in Console<br>Compare with Clipboard<br>File Encoding        |                                                                                              |  |
|                                           |              |                                                                                                                                                 | 🖓 Create Gist                                                                                                     |                                                                                              |  |
|                                           |              |                                                                                                                                                 |                                                                                                                   |                                                                                              |  |
|                                           |              |                                                                                                                                                 |                                                                                                                   |                                                                                              |  |
|                                           |              |                                                                                                                                                 |                                                                                                                   |                                                                                              |  |
|                                           |              |                                                                                                                                                 |                                                                                                                   |                                                                                              |  |
|                                           |              |                                                                                                                                                 |                                                                                                                   |                                                                                              |  |
|                                           |              |                                                                                                                                                 |                                                                                                                   |                                                                                              |  |

# Python Function (Example)

1. <u>Constant Voltage Calibration for single channel</u>

Calibration work by applying voltage below the limit that we set in this function

```
cvCalibrationSingleChannel(channel, vcal)
```

channel (int): channel number

```
vcal (float): 0 - 36 V
```

Example:

Calibration with DUT connected to channel 1, voltage limit 0.5 V.

```
cvCalibrationSingleChannel(1, 0.5)
```

2. Constant Voltage Calibration for all channel

Calibration work by applying voltage and current below the limit that we set in this function

cvCalibrationAllChannel(vcal)

vcal (float array): 0 - 36 V

#### 3. Set ON for single channel

```
setChannel(channel, voltageVal)
channel (int): channel number
voltageVal (float): 0 - 36V
```

#### 4. Set ON for all channels

```
setVoltageAllChannels(AllVValues)
AllVValues (float array): voltage values in array(V)
Example:
AllVValues = [20.1, 2.5, 13.0, 4, 5, 10.5, 9.5, 22]
```

#### 5. <u>Set Range for all channels</u>

setRangeAllChannels(AllRangeValues)
AllRangeValues (Int array): voltage range index values in array
Array Index:
0: 0-5 V
1: 0-10 V

- 2: 0-20 V
- 4: 0-34 V (with 36 power supply)

#### Example:

AllRValues = [1, 0, 1, 0, 2, 1, 0]

#### 6. <u>Set GPIO digital output</u>

setGPIO(index, value)
Index (int): Index of GP pin (12, 13, 16, 19, 26)
Value (string): "HIGH" or "LOW"
Example:
Set GP26 output to digital high
setGPIO(26, "HIGH")

#### 7. Set Measurement Config

measurementConfig(voltConvTime, currConvTime, averaging)
voltConvTime(Int uS): Voltage measurement conversion time
currConvTime(Int uS): Current measurement conversion time
averaging(int): count of samples to be averaged

#### 8. <u>Set OFF for single channel</u>

setOff(channel)
channel (int): channel number

#### 9. <u>Set OFF for all channels</u>

setOffAllChannels(maxChannel)
maxChannel (int): maximum number of channels in XPOW

#### 10. Read real-time value for single channel

readChannel(channel)
channel (int): channel number

#### 11.<u>Read real-time value for all channels</u>

readCommand(maxChannel)
maxChannel (int): maximum number of channels in XPOW

#### 12. Automatic Setting for One Channel

Change and record the value in one channel for every time duration. The result will be saved as a CSV file.

sweepOne(channel, seqValueV, seqValueC, duration)
channel (int): channel number
seqValueV (float array): values for the voltage (V) for one channel in array.
seqValueC (float array): values for the current (mA) for one channel in array
duration (int): waiting time to change to the next value in seconds

#### Example:

```
channel = 1
seqValueV = [20.1, 2.5, 13.0, 4, 5, 10.5, 9.5, 22]
seqValueC = [100, 150, 100, 50, 200, 10, 10]
duration = 5
```

# **SCPI** Commands

The XPOW can be controlled using Standard Commands for Programmable Instruments (SCPI) with 115200 baud rates.

Description: Constant Voltage Mode Calibration for single channel

Format:

CH:[n]:CALIB:[V Values]:[C Values]

#### Description: Set output voltage for single channel

Format:

CH:[n]:VOLT:[VOLT VALUES]

Result:

<CH:1:VOLT:[VOLT VALUES]:OK>

Example 1: Set the output voltage of channel 1 to 36V

CH:1:VOLT:34 (set the output voltage of channel 1 to max 36 V)

Result:

<CH:1:VOLT:34:OK>

Example 2: Set the output voltage of channel 3 to 20V

CH:3:VOLT:20 (set the output voltage of channel 3 to 20 V)

#### Result:

<CH:3:VOLT:20:OK>

#### Display real-time data for single channel

Format:

CH:[n]:VAL?

Description: Display voltage and current real-time value of channel n.

Result:

<val:[n]:VOLTAGE VAL:CURRENT VAL>

Example:

CH:1:VAL?

Result:

<val:1:6.101:100.211>

#### Set output voltage for a group of channels

Format:

CH: [m-n]:VOLT: [0-Vmax]

Description: Set the output voltage of channel m to channel n to [0-36 V].

Note: 1 <= m < n <= Channel Max

Example:

CH:1-8:VOLT:20 (set outputs of channel 8 to channel 10 to 20 Volt)

#### Set measurement config

Format:

MEASCONF:VoltConvTime:CurrConvTime:Averaging

Description: Set measurement conversion time in  $\mu$ s and average sample counts.

Result:

MEASCONF:VoltConvTime:CurrConvTime:Averaging >> OK!

Set pin GPIO Input Format: GPIO: [PIN NAME] Description: Read the GPIO pin Example:

GPIO:PD4

Result :

GPIO:PD4

Output - High

Format:

GPIO:[PIN NAME]:HIGH

Description: Set the GPIO pin to high (5V)

Example:

GPIO:PF5:HIGH

Result: GPIO:PF5:HIGH

Output - Low

Format:

GPIO:[PIN NAME]:LOW

Description: Set the GPIO pin to low (0V)

Example:

GPIO:PF5:LOW

Result :

GPIO:PF5:LOW

Retrieve device information

Format:

\*IDN?

Description: Get information about the device.

Example:

\*IDN?

Result :

\*IDN? >> XPOW-8AX-CV-U, Nicslab Ops, Inc.

<u>Set range</u>

Format:

CH:[n]:SVR:[0-3]

Note:

0 -> 5 V

1 -> 10 V

2 -> 20 V

3 -> 36 V

Default: 3

Result:

<CH:[n]:SVR:[RANGE VALUES]:OK>

Example 1: Set the range of channel 1 to maximum.

CH:1:SVR:3 (set the range of channel 1 to max 36 V)

Result:

<CH:1:SVR:3:OK>

# 5. System Shutdown

This section describes how to shut down the XPOW-8AX-CV-U.

In the case of using GUI, the steps are as follows:

- 1. Set OFF all the channel in the GUI.
- 2. Press the ON/OFF Button in GUI (B1,Figure 4). It will change the color of the button from green to grey.
- 3. Close the GUI application.
- 4. Press button A1 (Figure 3).
- 5. Turn off the DC Power Supply.

In the case of using SCPI Command, the steps are as follows:

- 1. Use setOff (channel) function to set off the channel used before.
- 2. Press the button A1 (Figure 3).
- 3. Turn off the DC Power Supply

NOTE : Once the soft shutdown occurred, all led will be turned off. To use XPOW-8AX-CV-U after a soft shutdown, just switch off and switch on again (restart) the XPOW-8AX-CV-U.

# 6. Troubleshooting

Please use the following guidelines to identify a particular problem. If the solution does not rectify the problem, contact us at <u>support@nicslab.com</u>.

| Problem                                                             | Cause                       | Solution                                                                                                                                                                                 |
|---------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Front end light off when switch turned on                           | No USB connection           | Check USB connection to<br>Laptop/PC                                                                                                                                                     |
| The Blue light off when the software active or the software freezes | Initialization failed       | Restart the software / unplug -<br>plug the USB connector, or<br>Press Reset Button                                                                                                      |
| No channel output detected<br>at device under test                  | Connection failed           | Check metal pad check point to intended channel                                                                                                                                          |
| No USB port detected at device manager                              | No USB connection           | Turn on the XPOW-8AX box<br>before running the application,<br>and check USB connection<br>Check the Arduino Driver if it is<br>installed in the computer.<br>Check to another USB port. |
| Unable to upload the file                                           | File format problem         | Make sure the file format is .csv                                                                                                                                                        |
| No value after upload the file                                      | File problem                | Check the file content, make<br>sure there is no blank space on<br>each row.                                                                                                             |
| Unable to use Auto Mode<br>feature                                  | File format problem         | Check the file format, it should<br>be a csv file.<br>Check content format                                                                                                               |
| Display value unstable in GUI                                       | Serial Connection<br>Failed | Change USB cable.<br>Use low noise USB cable.                                                                                                                                            |

#### Table 4. Troubleshooting

# 7. Warranty

Nicslab warrants the hardware and software designed by Nicslab to work accordingly, fulfilling the highest standard of quality product. Nicslab is not liable for consequential or incidental damages or for errors in subject to misuse, neglect, accident, modification, use in critical operation, or has been soldered or altered in any way outside stated by us or unauthorized maintenance.

Nicslab retains to change the material and technical data of this manual at any time without notice, in future editions.

Please do not hesitate to contact us at support@nicslab.com if you would like to have more information on warranty or return and refund policy.

# 8. Compliance

This product complies to the requirements of the European Union's *Conformite Europenne* (CE) and Restriction of Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2015/863 (RoHS3). The certificates can be accessed <u>here</u>.

# 9. Contact

#### **United States**

Nicslab Ops, Inc. 228 Hamilton Avenue, 3<sup>rd</sup> Floor, Palo Alto Silicon Valley, CA, 94301 Phone (WhatsApp): +1 (619) 347-0732 Email: support@nicslab.com Website: www.nicslab.com.

#### Indonesia

PT. Nicslab Global Industri Wisma Monex 9<sup>th</sup> floor Jl. Asia Afrika No. 133-132, Bandung West Java 40112 Phone: +62 22 8602 6854 Email: nicslab.id@nicslab.com

Book a meeting <u>here</u>.