

DATA SHEET

SKY67189-396LF: 400 to 6000 MHz Broadband Low-Noise Amplifier

Applications

- 2G/3G/4G/5G TDD and FDD systems
- Active antenna array and massive MIMO
- Receive LNA for micro-cell, macro-cell, and small-cell base stations
- Land mobile radios and military communications
- · Low-noise broadband gain block and driver amplifier

Features

- · Excellent broadband flat gain performance
- · Low noise figure
- High IP3 performance over voltage
- · Minimal external components
- Low current IDD: 50 mA @ 5.0 V
- Fast rise/fall time ENABLE function suitable for 5G TDD applications
- Temperature and process-stable active bias up to +115 °C
- Miniature DFN (8-pin, 2 x 2 mm) package (MSL1 @ 260 °C per JEDEC J-STD-020)

Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*TM, document number SQ04-0074.

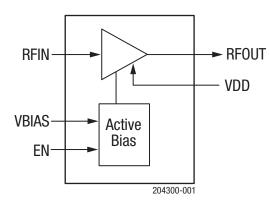


Figure 1. SKY67189-396LF Block Diagram

Description

The SKY67189-396LF is a wide-band low-noise amplifier with superior gain flatness and exceptional linearity.

The compact 2 x 2 mm, 8-pin Dual Flat No Lead packaged LNA is designed for 2G/3G/4G/5G TDD and FDD infrastructure systems operating from 400 MHz to 6 GHz.

The internal active bias circuitry provides stable performance over temperature and process variation.

A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

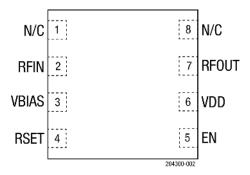


Figure 2. SKY67189-396LF Pinout (Top View)

Table 1. SKY67189-396LF Signal Descriptions

Pin	Name	Description	Pin	Name	Description
1	N/C	No connection (may be connected to ground with no change in performance)	5	EN	Enable voltage to LNA
2	RFIN	RF input (DC blocking capacitor required)		VDD	VDD voltage to LNA
3	VBIAS	Bias voltage for input gate		RFOUT	RF output. DC blocking capacitor is required.
4	RSET	External resistor to set the bias current	8	N/C	No connection (may be connected to ground with no change in performance)

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY67189-396LF are provided in Table 2. Recommended operating conditions are shown in Table 3. Thermal data is shown in Table 4.

Electrical specifications are provided in Table 5. Typical performance characteristics are shown in Figures 3 through 13.

Table 2. SKY67189-396LF Absolute Maximum Ratings¹

Parameter	Symbol	Minimum	Maximum	Units
Supply voltage	VDD	0	5.5	V
Quiescent supply current	IDQ		100	mA
RF input power (C/W)	Pin		+22	dBm
Storage temperature	TSTG	-40	+150	°C
Operating temperature	ТА	-40	+115	°C
Junction temperature	TJ		+150	°C
Electrostatic discharge:	ESD			
Charged Device Model (CDM), Class C3 Human Body Model (HBM), Class 1A			1000 250	V V

¹ Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

ESD HANDLING: Industry-standard ESD handling precautions must be adhered to at all times to avoid damage to this device.

Table 3. SKY67189-396LF Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
Supply voltage	VDD	3.3	5.0	5.25	V
LNA enable ON OFF	EN	1.17	0 1.8	0.63 2.4	V V

Table 4. SKY67189-396LF Electrical Specifications: Thermal Data¹

(VDD = 5.0 V, Enable = GND, TA = +25 °C, PIN = -20 dBm, Characteristic Impedance [Zo] = 50 Ω , Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Thermal resistance	ӨЈС			56.9		°C/W
Channel temperature @ +115 °C reference (package heat slug)	TJ	VDD = 5.0 V, IDQ = 56 mA, no RF applied		131		°C

 $[\]overline{\ }^{1}$ Performance is guaranteed only under the conditions listed in this table.

Table 5. SKY67189-396LF Electrical Specifications: 2500 to 6000 MHz Optimized Tuning¹ (VDD = 5.0 V, Enable = GND, TA = +25 °C, PIN = -20 dBm, Characteristic Impedance [Zo] = 50 Ω , Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Noise figure	NF	@ 3300 MHz @ 3800 MHz @ 4400 MHz @ 5000 MHz		0.69 0.69 0.75 0.81	0.98 0.97 1.08 1.17	dB dB dB dB
Gain	IS21I	@ 3300 MHz @ 3800 MHz @ 4400 MHz @ 5000 MHz	16.4 16.1 15.5 14.8	18.3 18.0 17.4 16.7		dB dB dB dB
Input return loss	IS11I	@ 3300 MHz @ 3800 MHz @ 4400 MHz @ 5000 MHz	17.0 19.4 15.6 10.8	22.7 29.2 23.7 14.9		dB dB dB dB
Output return loss	IS22I	@ 3300 MHz @ 3800 MHz @ 4400 MHz @ 5000 MHz	8.6 9.2 9.2 8.2	12.1 13.2 12.3 11.5		dB dB dB dB
Reverse isolation		@ 3300 MHz @ 3800 MHz @ 4400 MHz @ 5000 MHz	25.8 25.9 26.5 27.2	28.8 28.9 29.5 30.5		dB dB dB dB
Third order output intercept point	OIP3	P _{IN} = -20 dBm, Δ Tone = 1 MHz @ 3300 MHz @ 3800 MHz @ 4400 MHz @ 5000 MHz	25.8 25.4 25.3 24.8	29.2 29.0 28.5 28.3		dBm dBm dBm dBm
1 dB output compression point	OP1dB	@ 3300 MHz @ 3800 MHz @ 4400 MHz @ 5000 MHz	16.8 16.6 16.0 15.6	19.2 19.0 18.4 17.9		dBm dBm dBm dBm
DC Specifications	•					
Supply voltage	V_{DD}			5.0	_	V
Quiescent current	IDD			52	60	mA
Settling time 0.3 dB^2 Settling time 0.1 dB^3	ton	@ 4400 MHz		0.2 0.2	1 1	us us


 $[\]ensuremath{^{1}}$ Performance is guaranteed only under the conditions listed in this table.

² Settling time 0.3 dB is measured from the time the PA enable reaches 50% of PA enable "on" level to the time at which the RF output power achieves within 0.3 dB of the average steady-state "on" level.

³ Settling time 0.1 dB is measured from the time the PA enable reaches 50% of PA enable "on" level to the time at which the RF output power achieves within 0.1 dB of the average steady-state "on" level.

Typical Performance Characteristics

2500 to 6000 MHz, VDD = 5 V, P_{IN} = -20 dBm, Characteristic Impedance [Zo] = 50 Ω , Unless Otherwise Noted

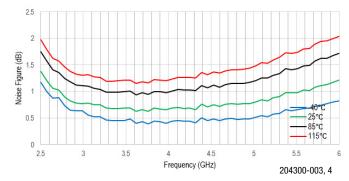
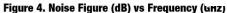
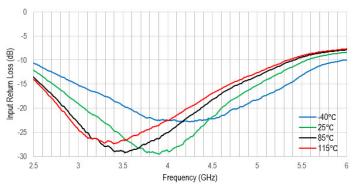




Figure 3. Small Signal Gain (dB) vs Frequency (GHz)

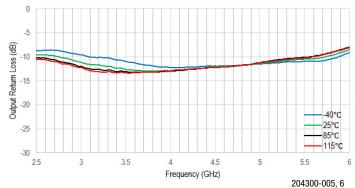
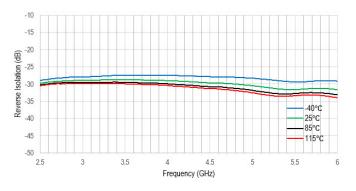



Figure 5. Input Return Loss (dB) vs Frequency (GHz)

Figure 6. Output Return Loss (dB) vs Frequency (GHz)

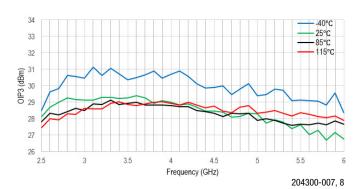


Figure 7. Reverse Isolation (dB) vs Frequency (GHz)

Figure 8. OIP3 (dBm) vs Frequency (GHz)

Typical Performance Characteristics

2500 to 6000 MHz, VDD = 5 V, P_{IN} = -20 dBm, Characteristic Impedance [Zo] = 50 Ω , Unless Otherwise Noted

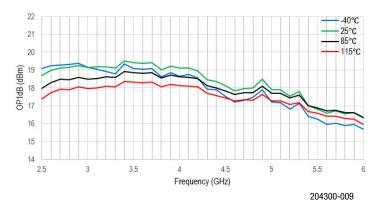
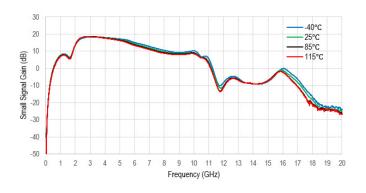



Figure 9. OP1dB (dBm) vs Frequency (GHz)

Typical Performance Characteristics

0 to 20 GHz, VDD = 5 V, P_{IN} = -20 dBm, Characteristic Impedance [Zo] = 50 Ω , Unless Otherwise Noted

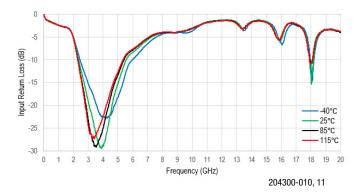
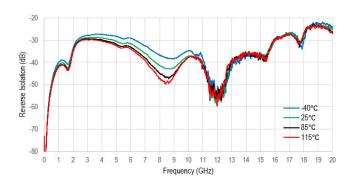



Figure 10. Small Signal Gain (dB) vs Frequency (GHz)

Figure 11. Input Return Loss (dB) vs Frequency (GHz)

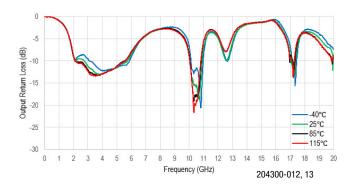
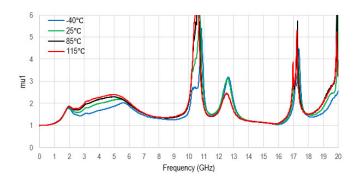



Figure 12. Reverse Isolation (dB) vs Frequency (GHz)

Figure 13. Output Return Loss (dB) vs Frequency (GHz)

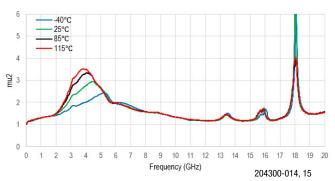


Figure 14. Stability Factor, µ1 (dB) vs Frequency (GHz)

Figure 15. Stability Factor, µ2 (dB) vs Frequency (GHz)

Evaluation Board Description

The SKY67189-396LF Evaluation Board is used to test the performance of the SKY67189-396LF LNA. An Evaluation Board schematic (optimized for 2500 to 6000 MHz tuning) and assembly diagram are shown below.

Table 6 lists the Bill of Materials (BOM) for the Evaluation Board optimized for 2500 to 6000 MHz. EVB layer detail information is provided in Figure 18.

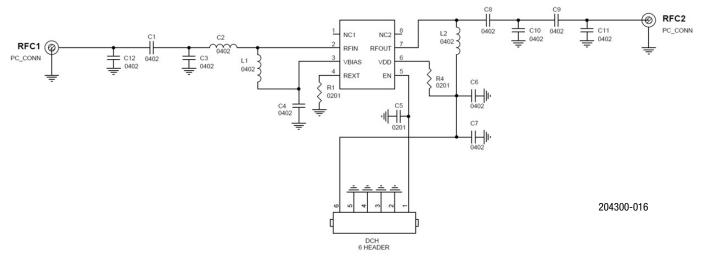


Figure 16. SKY67189-396LF Evaluation Board Schematic for 2500 to 6000 MHz Tuning

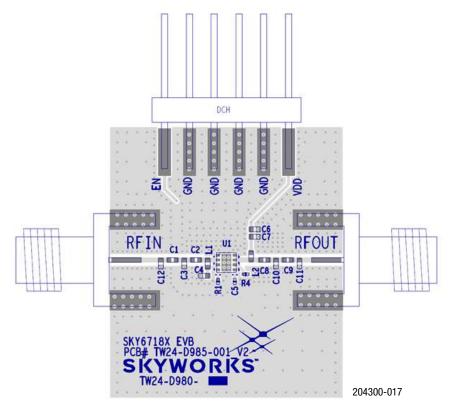


Figure 17. SKY67189-396LF EVB Assembly Diagram

Table 6. SKY67189-396LF Evaluation Board Bill of Materials (BOM) for 2500 to 6000 MHz Tuning

Component	Description	Value	Size	Manufacturer	Part Number
C1	Capacitor	6.8 pF	0402	muRata	GJM1555C1H6R8CB01
C2	Inductor	0.4 nH	0402	TDK	MLG1005S0N4PT4BT
C3	Capacitor	0.2 pF	0402	muRata	GJM1555C1HR20WB01
C4	Capacitor	2.0 pF	0402	muRata	GJM1555C1H2R0BB01
C6	Capacitor	5.6 pF	0402	muRata	GRM1555C1H5R6DA01
C7	Capacitor	4.7 uF	0402	muRata	GRM155C80J475MEAA
C8	Capacitor	3.3 pF	0402	muRata	GRM1555C1H3R3CA01
C9	Resistor	0 Ω	0402		
L1	Inductor	3.6 nH	0402	muRata	LQW15AN3N6C10
L2	Inductor	1.8 nH	0402	muRata	LQG15HS1N8S02
R1	Resistor	5.1 kΩ (1%)	0201		
R4	Resistor	20 Ω	0201		
C5, C10, C11, C12	DNI				

204300-005

Figure 18. SKY67189-396LF EVB Layer Details

Package Dimensions

A typical part marking for the SKY67189-396LF is shown below. The PCB layout footprint, package dimensions and tape and reel dimensions follow below.

Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY67189-396LF is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Solder Reflow Information*, document number 200164.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

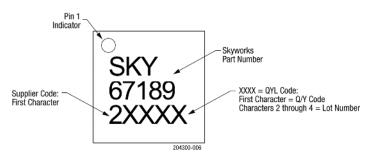


Figure 19. SKY67189-396LF Typical Part Marking

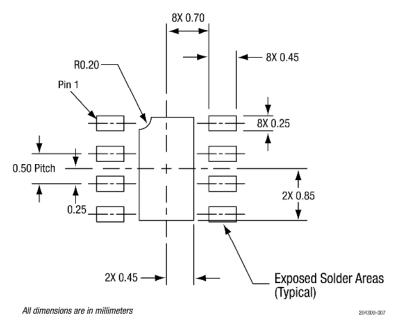
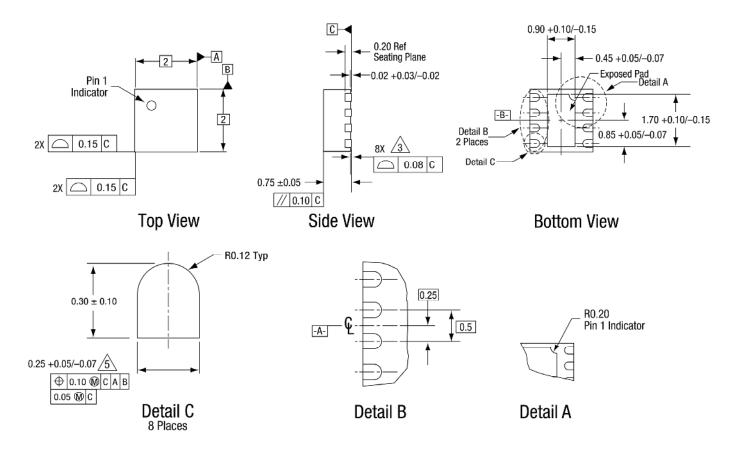



Figure 20. SKY67189-396LF PCB Layout Footprint

Notes:

- 1. All measurements are in millimeters.
- 2. Dimensions and tolerances according to ASME Y14.5M-1994.
- 3. Coplanarity applies to the exposed heat sink ground pad as well as the terminals.
- 4. Plating requirement per source control drawing (SCD) 2504.
- 5. Dimension applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.

204300-008

Figure 21. SKY67189-396LF Package Dimensions

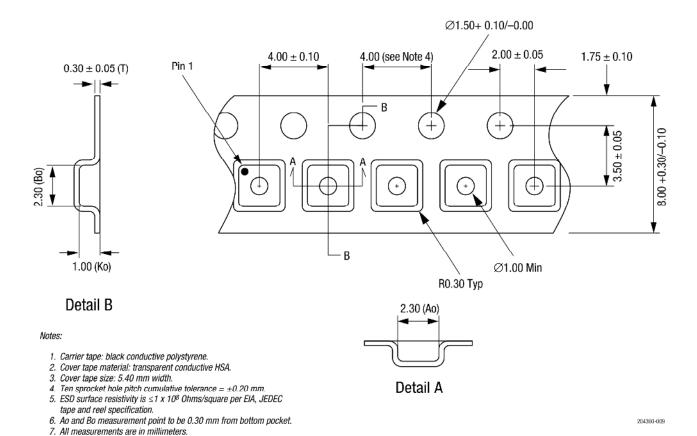


Figure 22. SKY67189-396LF Tape and Reel Dimensions

Ordering Information

Part Number	Product Description	Evaluation Board Part Number		
SKY67189-396LF	400 to 6000 MHz Broadband LNA	SKY67189-396EK1 (2.5 to 6.0 GHz Tuning)		

Copyright © 2016 - 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5®, Sky0ne®, SkyBlueTM, Skyworks GreenTM, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.