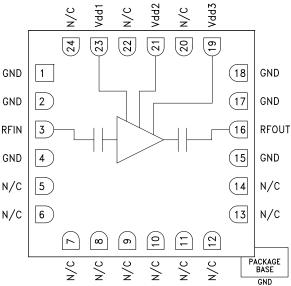


Typical Applications

This HMC963LC4 is ideal for:

- Point-to-Point Radios
- · Point-to-Multi-Point Radios
- Military & Space
- Test Instrumentation

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 6 - 26.5 GHz


Features

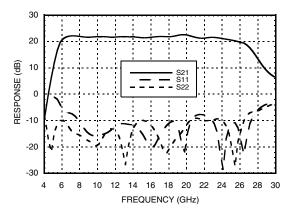
Low Noise Figure: 2.5 dB High Gain: 22 dB P1dB Output Power: 10 dBm Single Supply Voltage: +3.5V @ 45mA Output IP3: +18 dBm 50 Ohm matched Input/Output 24 Lead 4x4 mm SMT Package: 16mm²

General Description

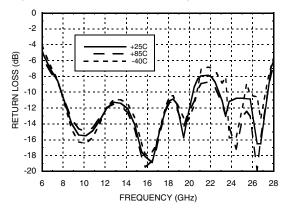
The HMC963LC4 is a self-biased GaAs MMIC Low Noise Amplifier housed in a leadless 4x4 mm ceramic surface mount package. The amplifier operates between 6 and 26.5 GHz, providing 20 dB of small signal gain, 2.5 dB noise figure, and output IP3 of +18 dBm, while requiring only 45 mA from a +3.5 V supply. The P1dB output power of +10 dBm enables the LNA to function as a LO driver for balanced, I/Q or image reject mixers. The HMC963LC4 also features I/Os that are DC blocked and internally matched to 50 Ohms, making it ideal for high capacity microwave radios and VSAT applications.

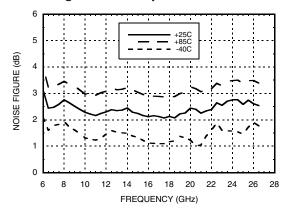
Functional Diagram Vdd2 /dd1 N/C N/C

Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vdd1 = Vdd2 = +3.5V, Idd = 45 mA

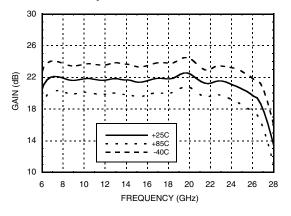

Parameter	Min.	Тур.	Max.	Units
Frequency Range		6 - 26.5		GHz
Gain	16.5	22		dB
Gain Variation over Temperature		0.03		dB / °C
Noise Figure [1]		2.5	3.5	dB
Input Return Loss		10		dB
Output Return Loss		10		dB
Output Power for 1 dB Compression	7	10		dBm
Saturated Output Power (Psat)		12		dBm
Output Third Order Intercept (IP3)		18		dBm
Supply Current (Idd) (Vdd = 3.5V, Vgg1 = Vgg2 = Open)		45	70	mA
[1] Board loss subtracted out.				

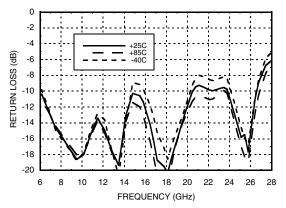
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners



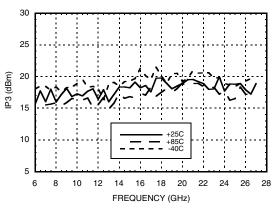

Broadband Gain & Return Loss

Input Return Loss vs. Temperature


Noise Figure vs. Temperature [1]

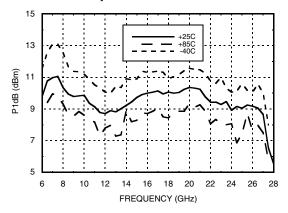

[1] Board loss subtracted out.

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 6 - 26.5 GHz

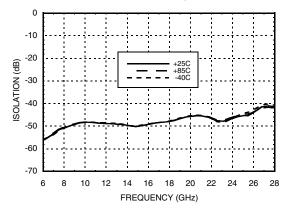

Gain vs. Temperature

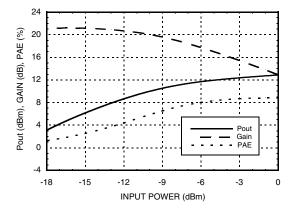
Output Return Loss vs. Temperature

Output IP3 vs. Temperature

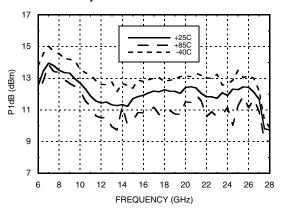


For price, delivery, and to place orders: Analog Devices, Inc., One Analog Way, Wilmington, MA 01887 Phone: 781-937-1428 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

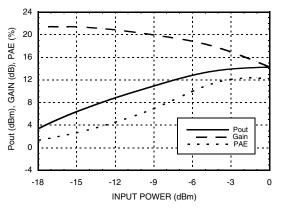



P1dB vs. Temperature

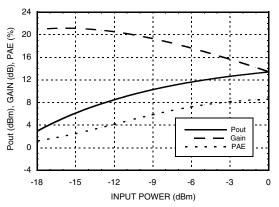
Reverse Isolation vs. Temperature



Power Compression @ 16 GHz

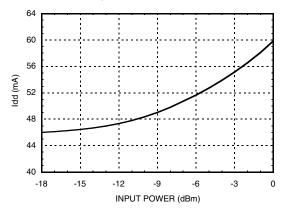


GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 6 - 26.5 GHz


Psat vs. Temperature

Power Compression @ 8 GHz

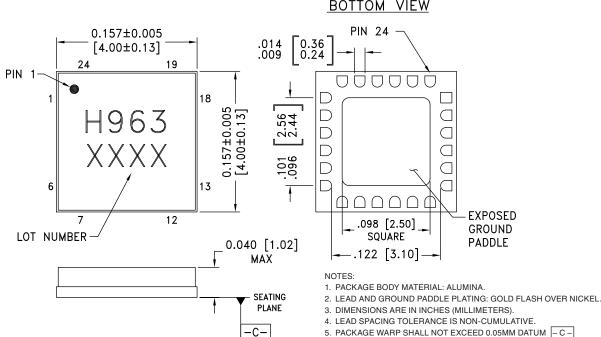
Power Compression @ 24 GHz



HMC963LC4 v03.0223

Current vs. Input Power @ 16 GHz

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 6 - 26.5 GHz


Absolute Maximum Ratings

Drain Bias Voltage	+4V	
RF Input Power 0 dBm		
Channel Temperature 150 °C		
Continuous Pdiss (T = 85 °C) (derate 8 mW/°C above 85 °C)	0.52 W	
Thermal Resistance (Channel to ground paddle) 125 °C/W		
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM) Class 0 <150		

6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

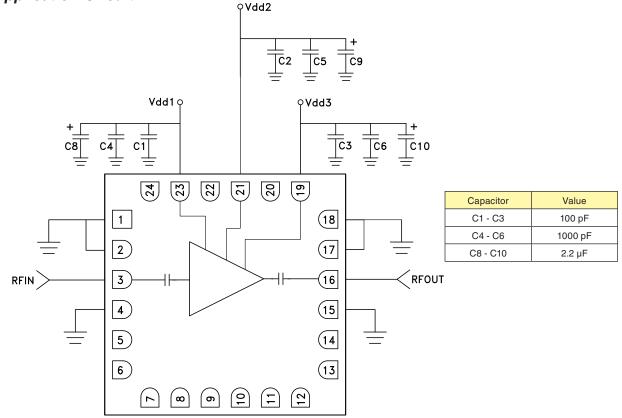
BOTTOM VIEW

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC963LC4	Alumina, White	Gold over Nickel	MSL3 ^[1]	H963 XXXX
[1] Max peak reflow te	mperature of 260 °C			

PCB RF GROUND.

[2] 4-Digit lot number XXXX

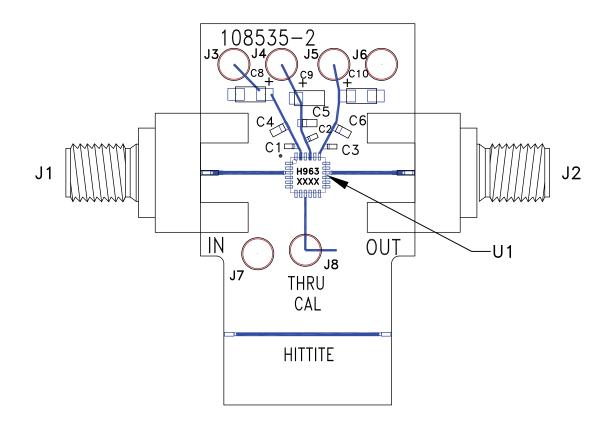


GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 6 - 26.5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 2, 4, 15, 17, 18	GND	These pins and package bottom must be connected to RF/DC ground.		
3	RFIN	This pin AC coupled and matched to 50 Ohms		
5 - 14, 20, 22, 24	N/C	No connection necessary. These pins may be connected to RF/DC ground. Performance will not be affected.		
16	RFOUT	This pin AC coupled and matched to 50 Ohms		
19, 21, 23	Vdd1, Vdd2, Vdd3	Power supply voltages for the amplifier. Bypass capacitors are required. See application circuit herein.	Vdd1,2,3	

Application Circuit


For price, delivery, and to place orders: Analog Devices, Inc., One Analog Way, Wilmington, MA 01887 Phone: 781-937-1428 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 6 - 26.5 GHz

Evaluation PCB

List of Material for Evaluation PCB EVAL01-HMC963LC4 [1]

Item	Description
J1, J2	2.92 mm Connectors
J3 - J8	DC Pin
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4 - C6	1000 pF Capacitor, 0603 Pkg.
C8 - C10	2.2 µF Capacitor, Tantalum
U1	HMC963LC4 Amplifier
PCB [2]	108535 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices upon request.