

TwinDie[™] 1.2V DDR4 SDRAM

MT40A2G16 – 128 Meg x 16 x 16 Banks x 1 Ranks

Description

The 32Gb (TwinDie[™]) DDR4 SDRAM uses Micron's 16Gb DDR4 SDRAM die; two x8s combined to make one x16. It uses similar signals as the mono x16, and there is one extra ZO connection for faster ZO calibration and a BG1 control required for x8 addressing. Refer to Micron's 16Gb DDR4 SDRAM data sheet (x8 option) for the specifications not included in this document. Specifications for base part number MT40A2G8 correlate to TwinDie manufacturing part number MT40A2G16.

Features

- Uses two x8 16Gb Micron die to make one x16
- Single-rank TwinDie
- $V_{DD} = V_{DDO} = 1.2V (1.14 1.26V)$
- 1.2V V_{DDO}-terminated I/O
- JEDEC-standard ball-out
- Low-profile package

Features

- $T_C = 0^{\circ}C$ to $95^{\circ}C$ - 0°C to 85°C: 8192 refresh cycles in 64ms
 - 85°C to 95°C: 8192 refresh cycles in 32ms

Options

Marking

•	-
Configuration	
– 128 Meg x 16 x 16 banks x 1 rank	2G16
 96-ball FBGA package (Pb-free) 	
– 10.5mm x 13mm x 1.2mm Die Rev :B	SKL
 96-ball FBGA package (Pb-free) 	
– 7.5mm x 13mm x 1.2mm Die Rev :F	TBB
• Timing – cycle time ¹	
– 0.625ns @ CL = 22 (DDR4-3200)	-062E
Self refresh	
– Standard	None
 Operating temperature 	
– Commercial (0°C \leq T _C \leq 95°C)	None
Revision	:B, :F

Table 1: Key Timing Parameters

Speed Grade ¹	Data Rate (MT/s)	Target CL-nRCD-nRP	^t AA (ns)	^t RCD (ns)	^t RP (ns)
-062E	3200	22-22-22	13.75	13.75	13.75

Notes: 1. Refer to Speed Bin Tables for additional details.

Table 2: Addressing

Parameter	2048 Meg x 16
Configuration	128 Meg x 16 x 16 banks x 1 rank
Bank group address	BG[1:0]
Bank count per group	4
Bank address in bank group	BA[1:0]
Row addressing	128K (A[16:0])
Column addressing	1K (A[9:0])
Page size	1КВ

1

Notes: 1. Page size is per bank, calculated as follows:

Page size = 2^{COLBITS} × ORG/8, where COLBIT = the number of column address bits and ORG = the number of DQ bits.

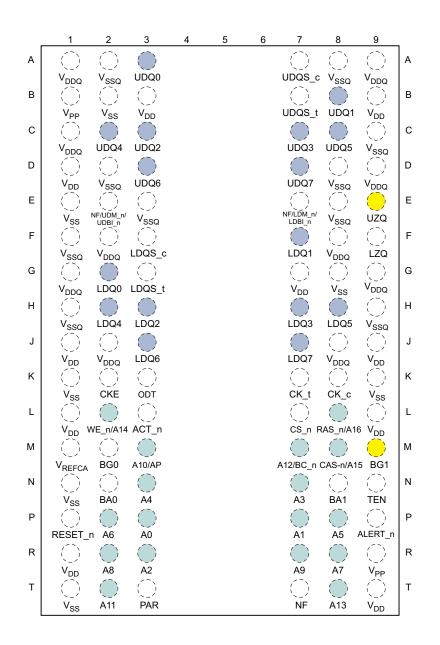
CCM005-1406124318-10461 32gb_x16_1cs_TwinDie.pdf - Rev. B 12/21 EN

Important Notes and Warnings

Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly or indirectly, any claim of product liability, personal injury, death, or property data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

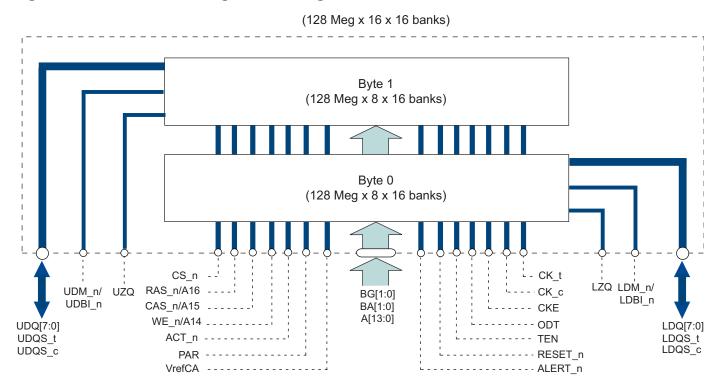
Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product.


Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative.

Ball Assignments

Figure 1: 96-Ball x16 SR DDP Ball Assignments


Notes: 1. See Ball Descriptions in the monolithic data sheet.

2. A slash "/" defines a mode register selectable function or command/address function. For example: Ball E2 = NF/UDM_n/UDBI_n where either NF, UDM_n, or UDBI_n is defined via MRS.

Functional Block Diagrams

Figure 2: Functional Block Diagram (128 Meg x 16 x 16 Banks x 1 Rank)

Connectivity Test Mode

Connectivity test (CT) mode for the x16 TwinDie single-rank (SR) device is the same as two mono x8 devices connected in parallel. The mapping is restated for clarity.

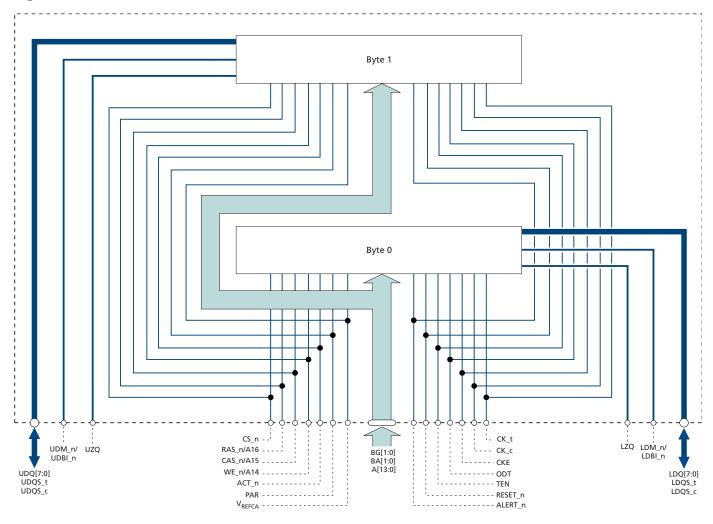
Minimum Terms Definition for Logic Equations

The test input and output pins are related by the following equations, where INV denotes a logical inversion operation and XOR a logical exclusive OR operation:

MT0 = XOR (A1, A6, PAR) MT1 = XOR (A8, ALERT_n, A9) MT2 = XOR (A2, A5, A13) MT3 = XOR (A0, A7, A11) MT4 = XOR (CK_c, ODT, CAS_n/A15) MT5 = XOR (CKE, RAS_n/A16, A10/AP) MT6 = XOR (ACT_n, A4, BA1) MT7L = XOR (BG1, LDM_n/LDBI_n, CK_t) MT7U = XOR (BG1, UDM_n/UDBI_n, CK_t) MT8 = XOR (WE_n/A14, A12 / BC, BA0) MT9 = XOR (BG0, A3, RESET_n and TEN)

Logic Equations for a x16 TwinDie, SR Device

Byte 0	Byte 1
LDQ0 = MT0	UDQ0 = MT0
LDQ1 = MT1	UDQ1 = MT1
LDQ2 = MT2	UDQ2 = MT2
LDQ3 = MT3	UDQ3 = MT3
LDQ4 = MT4	UDQ4 = MT4
LDQ5 = MT5	UDQ5 = MT5
LDQ6 = MT6	UDQ6 = MT6
LDQ7 = MT7L	UDQ7 = MT7U
$LDQS_t = MT8$	$UDQS_t = MT8$
$LDQS_c = MT9$	$UDQS_c = MT9$


x16 TwinDie, SR Internal Connections

The figure below shows the internal connections of the x16 TwinDie, SR. The diagram shows why byte 0 and byte 1 outputs have the same logic equations except LDQ7 and UDQ7; they are different because the DM_n/DBI_n pins are not common for each byte.

32Gb: x16 TwinDie Single-Rank DDR4 SDRAM Connectivity Test Mode

Figure 3: x16 TwinDie, SR

Electrical Specifications – Leakages

Table 3: Input and Output Leakages

Symbol	Parameter	Min	Мах	Units	Notes
I,	Input leakage current Any input $0V \le V_{IN} \le V_{DD}$, V_{REF} pin $0V \le V_{IN} \le 1.1V$ (All other pins not under test = 0V)	-4	4	μΑ	1
I _{VREF}	V_{REF} supply leakage current $V_{REFDQ} = V_{DD}/2$ or $V_{REFCA} = V_{DD}/2$ (All other pins not under test = 0V)	-4	4	μA	2
I _{ZQ}	Input leakage on ZQ pin	-50	10	μA	
I _{TEN}	Input leakage on TEN pin	-12	20	μA	
I _{OZPD}	Output leakage: V _{OUT} = V _{DDQ}	Ι	10	μA	3,5
I _{OZPU}	Output leakage: V _{OUT} = V _{SSQ}	-50	-	μA	3, 4 , 5

Notes: 1. Any input 0V < Vin < 1.1V

- 2. $V_{REFCA} = V_{DD}/2$, V_{DD} at valid level.
- 3. DQs are disabled.
- 4. ODT is disabled with the ODT input HIGH.
- 5. This value needs to be multiplied by 2 for ALERT_n since it serves both bytes.

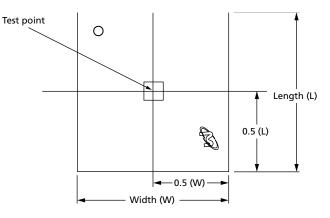
Temperature and Thermal Impedance

It is imperative that the DDR4 SDRAM device's temperature specifications, shown in the following table, be maintained in order to ensure the junction temperature is in the proper operating range to meet data sheet specifications. An important step in maintaining the proper junction temperature is using the device's thermal impedances correctly. The thermal impedances listed in apply to the current die revision and packages.

Incorrectly using thermal impedances can produce significant errors. Read Micron technical note TN-00-08, "Thermal Applications," prior to using the values listed in the thermal impedance table. For designs that are expected to last several years and require the flexibility to use several DRAM die shrinks, consider using final target theta values (rather than existing values) to account for increased thermal impedances from the die size reduction.

The DDR4 SDRAM device's safe junction temperature range can be maintained when the T_C specification is not exceeded. In applications where the device's ambient temperature is too high, use of forced air and/or heat sinks may be required to satisfy the case temperature specifications.

Table 4: Thermal Characteristics


Notes 1–3 apply to entire table

Parameter	Symbol	Value	Units	Notes
Operating temperature	Т _С	0 to 85	°C	
		0 to 95	°C	4

Notes: 1. MAX operating case temperature T_C is measured in the center of the package, as shown below.

- 2. A thermal solution must be designed to ensure that the device does not exceed the maximum T_C during operation.
- 3. Device functionality is not guaranteed if the device exceeds maximum T_C during operation.
- 4. If T_C exceeds 85°C, the DRAM must be refreshed externally at 2x refresh, which is a 3.9µs interval refresh rate. The use of self refresh temperature (SRT) or automatic self refresh (ASR), if available, must be enabled.

Figure 4: Temperature Test Point Location

Table 5: Thermal Impedance

P	Package	Substrate	Θ JA (°C/W) Airflow = 0m/s	Θ JA (°C/W) Airflow = 1m/s	Θ JA (°C/W) Airflow = 2m/s	⊖ JB (°C/W)	Θ JC (°C/W)	Notes
98-ball	Rev B "SKL"	Low conductivity	48.8	36.5	32.5	NA	4.6	1
		High conductivity	29.7	23.9	22.2	12.8	NA	
98-ball	Rev F "TBB"	Low conductivity	48.7	36.9	32.4	NA	2.6	1
		High conductivity	28.7	23.7	22.0	9.7	NA	

Notes: 1. Thermal resistance data is based on a typical number.

DRAM Package Electrical Specifications

Table 6: DRAM Package Electrical Specifications for x4, x8, and x16 DDP Devices

Notes 1-2 apply to the entire table

), 1866, 2133, 6, 2933, 3200			
Parameter		Symbol	Min	Max	Unit	Notes	
Input/output	Zpkg	Z _{IO}	35	60	ohm	3	
	Package delay	Td _{IO}	60	120	ps	3	
	Lpkg	LIO	-	5.5	nH		
	Cpkg	C _{IO}	-	4	pF		
DQSL_t/DQSL_c/D	Zpkg	Z _{IO DQS}	35	60	ohm		
QSU_t/DQSU_c	Package delay	Td _{IO DQS}	60	120	ps		
	Lpkg	L _{IO DQS}	-	5.5	nH		
	Cpkg	C _{IO DQS}	-	4	pF		
DQSL_t/DQSL_c,	Delta Zpkg	DZ _{IO DQS}	-	5	ohm	4	
DQSU_t/DQSU_c,	Delta delay	DTd _{IO DQS}	-	5	ps	4	
Input CTRL pins	Zpkg	Z _{I CTRL}	30	70	ohm	5	
	Package delay	Td _{I CTRL}	60	120	ps	5	
	Lpkg	L _{I CTRL}	-	7.5	nH		
	Cpkg	C _{I CTRL}	-	4	pF		
Input CMD ADD	Zpkg	Z _{I ADD CMD}	30 60		ohm	6	
pins	Package delay	Td _{I ADD CMD}	60	120	ps	6	
	Lpkg	L _{I ADD CMD}	-	7.5	nH		
	Cpkg	C _{I ADD CMD}	-	4	pF		
CK_t, CK_c	Zpkg	Z _{CK}	30	60	ohm		
	Package delay	Td _{CK}	60	120	ps		
	Delta Zpkg	DZ _{DCK}	-	5	ohm	7	
	Delta delay	DTd _{DCK}	-	5	ps	7	
Input CLK	Lpkg	L _{I CLK}	-	7.5	nH		
	Cpkg	C _{I CLK}	-	4	pF		
ZQ Zpkg		Z _{O ZQ}	-	50	ohm		
ZQ delay		Td _{O ZQ}	30	135	ps		
ALERT Zpkg		Z _{O ALERT}	30	60	ohm		
ALERT delay		Td _{O ALERT}	60	110	ps		

Notes: 1. The values in this table are guaranteed by design/simulation only, and are not subject to production testing.

32Gb: x16 TwinDie Single-Rank DDR4 SDRAM DRAM Package Electrical Specifications

- 2. Package implementations should satisfy targets if the Zpkg and package delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown. The package design targets are provided for reference, system signal simulations should not use these values but use the Micron package model.
- 3. Z_{IO} and Td_{IO} apply to DQ, DM, DQS_c, DQS_t, TDQS_t, and TDQS_c.
- 4. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for delay (Td).
- 5. $Z_{I \ CTRL}$ and $Td_{I \ CTRL}$ apply to ODT, CS_n, and CKE.
- 6. $Z_{I ADD CMD}$ and $Td_{I ADD CMD}$ apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, and WE_n.
- 7. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c for delay (Td).

Current Specifications – Limits

Table 7: DDR4 x16 TwinDie I_{CDD} and I_{CPP} Specifications and Conditions – Rev. B ($0^{\circ} \le T_{C} \le 85^{\circ}$ C)

Notes 1 and 2 apply to the entire table

Combined Symbol	Individual Die Status	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Units
I _{CDD0}	I _{CDD0} = I _{DD0} * 2	118	120	122	124	126	mA
I _{CPP0}	$I_{CPP0} = I_{PP0} * 2$	8	8	8	8	8	mA
I _{CDD1}	I _{CDD1} = I _{DD1} * 2	140	142	144	146	148	mA
I _{CDD2N}	$I_{CDD2N} = I_{DD2N} * 2$	96	98	100	102	104	mA
I _{CDD2NT}	$I_{CDD2NT} = I_{DD2NT} * 2$	104	106	108	110	112	mA
I _{CDD2P}	$I_{CDD2P} = I_{DD2P} * 2$	86	86	86	86	86	mA
I _{CDD2Q}	$I_{CDD2Q} = I_{DD2Q} * 2$	94	94	94	94	94	mA
I _{CDD3N}	$I_{CDD3N} = I_{DD3N} * 2$	152	154	156	158	160	mA
I _{CPP3N}	$I_{CPP3N} = I_{PP3N} * 2$	6	6	6	6	6	mA
I _{CDD3P}	$I_{CDD3P} = I_{DD3P} * 2$	132	134	136	138	138	mA
I _{CDD4R}	$I_{CDD4R} = I_{DD4R} * 2$	324	344	364	384	404	mA
I _{CDD4W}	$I_{CDD4W} = I_{DD4W} * 2$	300	316	332	350	366	mA
I _{CDD5R}	$I_{CDD5R} = I_{DD5R} * 2$	162	162	162	162	162	mA
I _{CPP5R}	$I_{CPP5R} = I_{PP5R} * 2$	10	10	10	10	10	mA
I _{CDD6N}	$I_{CDD6N} = I_{DD6N} * 2$	148	148	148	148	148	mA
I _{CDD6E} ³	$I_{CDD6E} = I_{DD6E} * 2$	258	258	258	258	258	mA
I _{CDD6R} ³	$I_{CDD6R} = I_{DD6R} * 2$	52	52	52	52	52	mA
I _{CDD6A} (25°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	30	30	30	30	30	mA
I _{CDD6A} (45°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	52	52	52	52	52	mA
I _{CDD6A} (75°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	146	146	146	146	146	mA
I _{CDD6A} (95°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	258	258	258	258	258	mA
I _{CPP6x} ³	$I_{CPP6x} = I_{CPP6x} * 2$	18	18	18	18	18	mA
I _{CDD7}	I _{CDD7} = I _{DD7} * 2	366	370	380	386	392	mA
I _{CPP7}	I _{CPP7} = I _{PP7} * 2	20	20	20	20	20	mA
I _{CDD8}	I _{CDD8} = I _{DD8} * 2	80	80	80	80	80	mA

Notes: 1. I_{CDD} values reflect the combined current of both individual die. I_{DDx} represents individual die values.

2. I_{CDD} values must be derated (increased) when operated outside of the range 0°C $\leq T_C \leq 85$ °C. They must also be derated when using features such as CAL, CA parity, read/write DBI, AL, gear-down, write CRC, 2X/4X REF, and DLL disabled. Refer to the 16Gb monolithic data sheet for all derating values. Derating values apply to each individual I_{DDx} that make up the combined I_{CDD} .

3. I_{CDD6R}, I_{CDD6A}, and I_{CDD6E} values are verified by design and characterization, and may not be subject to production test.

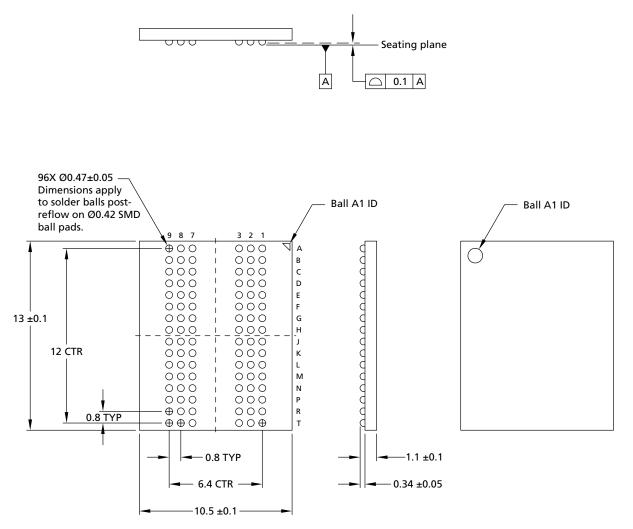
Table 8: DDR4 x16 TwinDie I_{CDD} and I_{CPP} Specifications and Conditions – Rev. F ($0^{\circ} \le T_{C} \le 85^{\circ}C$)

Notes 1 and 2 apply to the entire table

Combined Symbol	Individual Die Status	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Units
I _{CDD0}	$I_{CDD0} = I_{DD0} * 2$	132	134	136	138	140	mA
I _{CPP0}	I _{CPP0} = I _{PP0} * 2	8	8	8	8	8	mA
I _{CDD1}	I _{CDD1} = I _{DD1} * 2	160	162	164	166	168	mA
I _{CDD2N}	$I_{CDD2N} = I_{DD2N} * 2$	82	84	86	88	90	mA
I _{CDD2NT}	$I_{CDD2NT} = I_{DD2NT} * 2$	108	110	112	114	116	mA
I _{CDD2P}	$I_{CDD2P} = I_{DD2P} * 2$	76	76	76	76	76	mA
I _{CDD2Q}	$I_{CDD2Q} = I_{DD2Q} * 2$	84	84	84	84	84	mA
I _{CDD3N}	$I_{CDD3N} = I_{DD3N} * 2$	116	118	120	122	124	mA
I _{CPP3N}	$I_{CPP3N} = I_{PP3N} * 2$	4	4	4	4	4	mA
I _{CDD3P}	$I_{CDD3P} = I_{DD3P} * 2$	94	96	98	100	102	mA
I _{CDD4R}	$I_{CDD4R} = I_{DD4R} * 2$	282	308	334	360	386	mA
I _{CDD4W}	$I_{CDD4W} = I_{DD4W} * 2$	202	222	242	262	282	mA
I _{CDD5R}	$I_{CDD5R} = I_{DD5R} * 2$	136	136	136	136	136	mA
I _{CPP5R}	$I_{CPP5R} = I_{PP5R} * 2$	8	8	8	8	8	mA
I _{CDD6N}	$I_{CDD6N} = I_{DD6N} * 2$	106	106	106	106	106	mA
I _{CDD6E} ³	$I_{CDD6E} = I_{DD6E} * 2$	180	180	180	180	180	mA
I _{CDD6R} ³	$I_{CDD6R} = I_{DD6R} * 2$	40	40	40	40	40	mA
I _{CDD6A} (25°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	22	22	22	22	22	mA
I _{CDD6A} (45°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	40	40	40	40	40	mA
I _{CDD6A} (75°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	102	102	102	102	102	mA
I _{CDD6A} (95°C) ³	$I_{CDD6A} = I_{DD6A} * 2$	180	180	180	180	180	mA
I _{CPP6x} 3	$I_{CPP6x} = I_{CPP6x} * 2$	12	12	12	12	12	mA
I _{CDD7}	I _{CDD7} = I _{DD7} * 2	400	400	400	400	400	mA
I _{CPP7}	I _{CPP7} = I _{PP7} * 2	26	26	26	26	26	mA
I _{CDD8}	I _{CDD8} = I _{DD8} * 2	72	72	72	72	72	mA

Notes: 1. I_{CDD} values reflect the combined current of both individual die. I_{DDx} represents individual die values.

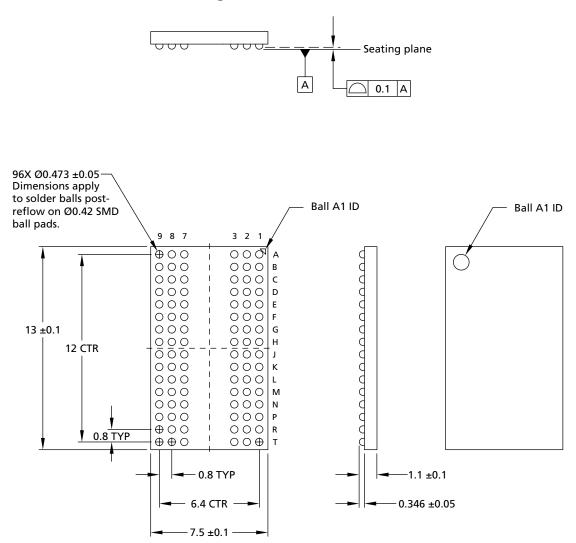
2. I_{CDD} values must be derated (increased) when operated outside of the range 0°C $\leq T_C \leq 85$ °C. They must also be derated when using features such as CAL, CA parity, read/write DBI, AL, gear-down, write CRC, 2X/4X REF, and DLL disabled. Refer to the 16Gb monolithic data sheet for all derating values. Derating values apply to each individual I_{DDx} that make up the combined I_{CDD} .


32Gb: x16 TwinDie Single-Rank DDR4 SDRAM Current Specifications – Limits

3. I_{CDD6R}, I_{CDD6A}, and I_{CDD6E} values are verified by design and characterization, and may not be subject to production test.

Package Dimensions

Figure 5: 96-Ball FBGA Die Rev. B (Package Code SKL)



Notes: 1. All dimensions are in millimeters.

2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu).

- Notes: 1. All dimensions are in millimeters.
 - 2. Solder ball material: SACQ (92.5% Sn, 4% Ag, 3% Bi, 0.5% Cu).

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006 208-368-4000, micron.com/support Micron and the Micron logo are trademarks of Micron Technology, Inc.

All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.

Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.