QVE00034 #### **DESCRIPTION** The QVE00034 is a slotted optical switch designed for multipurpose non-contact sensing. It consists of a GaAs LED and a silicon photo-transistor packaged into an injection molded housing and facing each other across a 0.315" (8.0 mm) gap. The housing is featuring locating knobs for accurate mounting. ### **FEATURES** - · No contact switching - 8mm wide slot - 0.5 mm aperture width - · Opaque black plastic housing - · Locating knobs on housing base for accurate mounting - Transistor Output ## **QVE00034** | ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified) | | | | | | | | | |---|--------------------|----------------|-------|--|--|--|--|--| | Parameter | Symbol | Rating | Units | | | | | | | Operating Temperature | T _{OPR} | -55 to +100 | °C | | | | | | | Storage Temperature | T _{STG} | -55 to +100 | °C | | | | | | | Soldering Temperature (Iron) ^(2,3,4) | T _{SOL-I} | 240 for 5 sec | °C | | | | | | | Soldering Temperature (Flow) ^(2,3) | T _{SOL-F} | 260 for 10 sec | °C | | | | | | | EMITTER | | | | | | | | | | Continuous Forward Current | I _F | 50 | mA | | | | | | | Reverse Voltage | V _R | 6 | V | | | | | | | Power Dissipation ⁽¹⁾ | P _D | 100 | mW | | | | | | | SENSOR | | | | | | | | | | Collector-Emitter Voltage | V _{CEO} | 30 | V | | | | | | | Emitter-Collector Voltage | V _{ECO} | 4.5 | V | | | | | | | Collector Current | I _C | 20 | mA | | | | | | | Power Dissipation ⁽¹⁾ | P _D | 150 | mW | | | | | | #### **NOTES** - 1. Derate power dissipation linearly 1.67 mW/°C above 25°C. - 2. RMA flux is recommended. - 3. Methanol or isopropyl alcohols are recommended as cleaning agents. - 4. Soldering iron tip 1/16" (1.6mm) from housing. | ELECTRICAL/OPTICAL CHARACTERISTICS (T _A = 25°C unless otherwise specified) | | | | | | | | | |--|--|-----------------------|-----|-----|-----|-------|--|--| | PARAMETER | TEST CONDITIONS | SYMBOL | MIN | TYP | MAX | UNITS | | | | EMITTER | | | | | | | | | | Forward Voltage | I _F = 20 mA | V _F | _ | 1.2 | 1.5 | V | | | | Reverse Current | V _R = 4 V | I _R | _ | _ | 10 | μA | | | | Peak Emission Wavelength | I _F = 20 mA | λ _{PE} | _ | 940 | _ | nm | | | | SENSOR | | | | | | | | | | Dark Current | V _{CE} = 10 V, I _F = 0 mA |
 I _D | _ | _ | 200 | nA | | | | | $V_{CE} = 2.5 \text{ V}, I_F = 0 \text{ mA}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ | ן טי ן | _ | _ | 3 | μA | | | | COUPLED | | | | | | | | | | Collector Current | I _F = 20 mA, V _{CE} = 10 V | I _{C(ON)} | 0.5 | _ | 14 | mA | | | | Collector Emitter Saturation
Voltage | $I_F = 20 \text{ mA}, I_C = 0.1 \text{ mA}$
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ | V _{CE (SAT)} | _ | _ | 0.4 | V | | | | Rise Time | $V_{CC} = 5 \text{ V}, R_L = 100 \Omega$ | t _r | _ | 4 | _ | | | | | Fall Time | I _C = 5 μA | t _f | _ | 4 | _ | μs | | | ## **QVE00034** ### **TYPICAL PERFORMANCE CURVES** ## **QVE00034** **QVE00034** #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### **LIFE SUPPORT POLICY** FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.