Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

General Description

The MAX9979 fully integrated, high-performance, dualchannel pin electronics integrates multiple automatic test equipment (ATE) functions into a single IC, including driver/comparator/load (DCL), parametric measurement unit (PMU), and built-in (16-bit) level-setting digital-to-analog converters (DACs). The device is ideal for memory and SOC tester applications. Each channel includes a fourlevel pin driver, window comparator, differential comparator, dynamic clamps, a versatile PMU, an active load, a high-voltage (VHH) programmable level, and 14 independent level-setting DACs. The MAX9979 features programmable cable-droop compensation for the driver output and for the comparator input, adjustable driver output resistance that allows optimal performance over typical datapath transmission-line variations, slew-rate adjustment, and a programmable high-voltage driver output.

The MAX9979 driver features a wide 8V (-1.5V to +6.5V) high-speed operating voltage range and a VHH programmable range of up to +13V. Operation modes include high-impedance, active-termination (3rd-level drive) and VHH (4th-level drive) modes. The device is highly linear even at low voltage swings. The driver provides highspeed differential control inputs compatible with most high-speed logic families. The window comparators provide extremely low timing variation over changes in slew rate, pulse width, and overdrive voltage. In high-impedance mode, the MAX9979 features dynamic clamps that dampen high-speed device-under-test (DUT) waveforms. The 20mA active load facilitates fast contact testing when used in conjunction with the comparators, and functions as a pullup/pulldown for open-drain/collector DUT outputs. The PMU offers five current ranges from ±2µA to ±50mA and can force and measure current or voltage. An SPI™compatible serial interface configures the MAX9979.

The MAX9979 is available in a small footprint, 68-pin (10mm x 10mm x 1mm) TQFN-EP-IDP package with exposed pad on the top for easy heat removal. Power dissipation is 1.2W per channel (typ) over the full operating voltage range with the active load disabled. The MAX9979 operates over an internal die temperature range of $+40^{\circ}$ C to $+100^{\circ}$ C and provides a temperature monitor output.

Applications

- Memory ATE Testers
- SOC ATE Testers

SPI is a trademark of Motorola, Inc.

Features

- High Speed: 1.1Gbps at 1V_{P-P}
- Extremely Low Power Dissipation: 1.2W/Channel (Active Load Disabled)
- Wide Voltage Range: -1.5V to +6.5V and Up to 13V VHH
- Wide Voltage Swing Range: 50mV_{P-P} to 13V_{P-P}
- Low-Leak Mode: 10nA max
- Integrated Termination-on-the-Fly (3rd-Level Drive)
- Integrated VHH High Voltage (4th-Level Drive)
- Integrated Voltage Clamps
- Integrated 20mA Active Load
- Integrated Per-Pin PMU
- Integrated Level-Setting CALDACs
- Programmable Cable-Droop Compensation for Both Driver Output and Comparator Input
- Programmable Driver Output Impedance
- Four Slew-Rate Settings for Driver Output
- Analog Measure Bus
- Very Low Timing Dispersion
- Minimal External Component Count
- SPI-Compatible Serial Control Interface
- 68-Pin Thermally Enhanced TQFN Package with Top-Side Heat Removal

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9979KCTK+	0°C TO +70°C	68 TQFN-EP-IDP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP-IDP = Exposed pad, inverted die pad.

Pin Configuration and Typical Operating Circuit appear at end of data sheet

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Absolute Maximum Ratings

V _{CC} to GND0.3V to +11V	TEMP to GND0 to V _{CC}
V _{EE} to GND5.5V to +0.3V	MEAS_ to GND(V _{EE} - 0.3V) to (V _{CC} + 0.3V)
V _{CC} to VEE0.3V to +16.5V	REF to GND0.3V to (2.6V + V _{DGS})
V _{DD} to DGND0.3V to +5.2V	Current into SCLK, DIN, CS, RST, LOAD
V _{HHP} to GND0.3V to +19V	Current into LLEAKP_, HIZMEASP_, ENVHHP_,
DGND to GND±0.3V	DUTHI_, DUTLO±30mA
CTV_, BV_ to GND0.3V to +5V	PMU-F Continuous Current±35mA
DATA_, NDATA_, RCV_,	PMU-F Peak Current±70mA
NRCV_ to GND (V _{EE} - 0.3V) to (V _{BV} _ + 0.3V)	PMU-S Continuous Current±1mA
CH_, NCH_, CL_, NCL_ to GND1.5V to (V _{CTV} + 0.3V)	PMU-S Peak Current±20mA
Current into CH_, NCH_, CL_, NCL ±35mA	DGS to GND±0.3V
DATA_ to NDATA_, RCV_ to NRCV	DUT_, SENSE_ Short-Circuit
DUT_, PMU-F, PMU-S, SENSE_ to GND	Duration to V _{CC} , V _{EE} Continuous
(non-VHH mode)(V _{EE} - 0.3V) to (V _{CC} + 0.3V)	Power Dissipation $(T_A = +70^{\circ}C)^*$
DUT_, PMU-F, PMU-S, SENSE_ to GND	MAX9979KCTK (derate 125mW/°C above +70°C)10W
(VHH mode)3.5V to +13.5V	Storage Temperature Range65°C to +150°C
SCLK, DIN, CS, RST, LOAD to GND0.3V to (V _{DD} + 0.3V)	Maximum Junction Temperature+150°C
LLEAKP_, HIZMEASP_, ENVHHP_, DUTHI_,	Lead Temperature (soldering, 10s)+300°C
DUTLO_, to GND0.3V to (V _{DD} + 0.3V)	

*Dissipation wattage values are based on still air with no heatsink. Actual maximum power dissipation is a function of heat extraction technique and may be substantially higher.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics**

TQFN

Junction-to-Case Thermal Resistance (θ_{JA}) 8.0°C/W Junction-to-Ambient Thermal Resistance (θ_{JC}) 0.3°C/W

**Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
DRIVER						
DC CHARACTERISTICS ($R_L \ge T$	10MΩ, unles	s otherwise noted; includes DAC error)				
	V _{DHV}	V _{DLV} = -1.5V, V _{DTV} = 1.5V	-1	.45 to +6.	50	
Output-Voltage Range	V _{DLV}	V _{DHV} = 6.5V, V _{DTV} = 1.5V	-1.50 to +6.45		V	
	V _{DTV}	V _{DHV} = 6.5V, V _{DLV} = -1.5V (Note 2)	-1.50		+6.50	
	V _{DHV}	V _{DHV} = 3V, V _{DLV} = -1.5V, V _{DTV} = 1.5V			±5	
Output Offset Voltage	V _{DLV}	V _{DLV} = 0V, V _{DHV} = 6.5V, V _{DTV} = 1.5V			±5	mV
	V _{DTV}	V _{DTV} = 1.5V, V _{DHV} = 6.5V, V _{DLV} = -1.5V			±5	
Output-Voltage Temperature Coefficient (Notes 3, 4)		DHV_, DLV_, DTV_		±75	±500	µV/°C

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CO	MIN	TYP	MAX	UNITS	
	A _{DHV} _	V _{DLV} _= -1.5V, V _D - and 4.5V	V _{DLV} _= -1.5V, V _{DTV} _= 1.5V, V _{DHV} _= 0V and 4.5V		1	1.002	
Gain	A _{DLV}	V _{DHV} _ = 6.5V, V _{D1} and 4.5V	_{TV_} = 1.5V, V _{DLV_} = 0V	0.998	1	1.002	V/V
	A _{DTV}	V _{DHV} _ = 6.5V, V _{DL} and 4.5V	_{_V_} = -1.5V, V _{DTV_} = 0V	0.998	1	1.002	
			V _{DLV} = -1.5V, V _{DTV} = 1.5V, V _{DHV} = 0V, 0.75V, 1.5V, 2.25V, 3V			±2	
		calibration points at 0 and 3V	V _{DHV} = 6.5V, V _{DTV} = 1.5V, V _{DLV} = 0V, 0.75V, 1.5V, 2.25V, 3V			±2	
			VD _{LV} = -1.5V, V _{DHV} = 6.5V, V _{DTV} = 0V, 0.75V, 1.5V, 2.25V, 3V			±2	
			$V_{DLV_{-}} = -1.5V,$ $V_{DTV_{-}} = 1.5V,$ $V_{DHV_{-}} = -1V$ and $6V$			±4.5	
Linearity Error			V _{DHV} = 6.5V, V _{DTV} = 1.5V, V _{DLV} = -1V and 6V			±4.5	mV
			$V_{DLV_{-}} = -1.5V,$ $V_{DHV_{-}} = 6.5V,$ $V_{DTV_{-}} = -1V$ and 6V			±4.5	
			V _{DLV} = -1.5V, VD _{TV} = 1.5V, V _{DHV} = -1.25V and 6.5V			±6	
		Full range rela- tive to calibration points at 0 and	V_{DHV} = 6.5V, V_{DTV} = 1.5V, V_{DLV} = -1.5V and 6.25V			±6	
	3V		V_{DLV} = -1.5V, V_{DHV} = 6.5V, V_{DTV} = -1.5V and 6.5V			±6	

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	co	NDITIONS	MIN	TYP	MAX	UNITS
		DHV_ to DLV_	V _{DLV} = 0V, V _{DTV} = 1.5V, V _{DHV} = 0.2V and 6.5V			±7	
		DLV_ to DHV_	V _{DHV} _ = 5V, V _{DTV} _ = 1.5V, V _{DLV} _ = -1.5 and 4.8V			±7	
Crosstalk		DTV_ to DLV_ and DHV_	V _{DHV} _= 3V, V _{DLV} _= 0V, V _{DTV} _= -1.5V and 6.5V			±2	mV
		DHV_ to DTV_	V _{DTV} _ = 1.5V, V _{DLV} _ = 0V, V _{DHV} _ = 1.6V and 3V			±3	
		DLV_ to DTV_	V _{DTV} = 1.5V, V _{DHV} = 3V, V _{DLV} = 0 and 1.4V			±3	
Term Voltage		Dependence on DATA_	V _{DTV} = 1.5V, V _{DHV} = 3V, V _{DLV} = 0V, DATA = 0 and 1			±2	mV
		DHV_	V _{DHV} = 3V	40			
DC Power-Supply Rejection (Note 5)		DLV_	$V_{DLV} = 0V$	40			dB
(1000)		DTV_	V _{DTV} = 1.5V	40			
DC Drive Current Limit		V _{DHV} = 6.5V,	DATA_ = 1, V _{DUT} _ = -1.5V	+60		+110	mA
		V _{DLV} _= -1.5V	DATA_ = 0, V _{DUT} _ = 6.5V	-110		-60	
DC Output Resistance		(Note 6)		48	50	52	Ω
DC Output Resistance Varia- tion (Note 7)			= 3V, V _{DLV} _ = 0V, V _{DTV} _ nA, 8mA, 15mA, 40mA		1	2	Ω
			_= 3V, V _{DLV} _= 0V, V _{DTV} _ mA, -8mA, -15mA, -40mA		1	2	52
Adjustable Output Resistance Range			0x8 and R _O = 0x0 vs. on of 0.36Ω (Note 6)		±2.5		Ω

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AC CHARACTERISTICS (RDUT	_ = 50Ω to G	Ground) (Note 8)				
Dynamic Drive Current	<u> </u>			±130		mA
		Cable-droop compensation off, V_{DLV} = 0V, V_{DHV} = 0.1V		30		
Drive-Mode Overshoot		Cable-droop compensation off, V_{DLV} = 0V, V_{DHV} = 1V		40		mV
		Cable-droop compensation off, V_{DLV} = 0V, V_{DHV} = 3V		50		
		Cable-droop compensation off, V_{DLV} = 0V, V_{DHV} = 5V		50		
Cable-Droop Compensation		V _{DLV} = 0V, VD _{HV} = 3V, CDRP = 0b000		0		%
Cable-Droop Compensation		V _{DLV} = 0V, V _{DHV} = 3V, CDRP = 0b111		10		70
Termination-Mode Overshoot		Cable-droop compensation off (Note 10)		0		mV
		To within 100mV, V_{DHV} = 5V, V_{DLV} = 0V		0.25	1	
Settling Time (Notes 4, 11)		To within 50mV, V_{DHV} = 3V, V_{DLV} = 0V		0.25	1	ns
		To within 50mV, V_{DHV} = 0.5V, V_{DLV} = 0V		0.25	1]
TIMING CHARACTERISTICS (N	Notes 8, 12)					
		Data to output, V _{DHV} = 3V, V _{DLV} = 0V (Note 13)	1	1.9	4	
Propagation Delay		Drive to term, term to drive (Notes 4, 14)	1.7	2.7	3.7]
		Drive to high impedance, high impedance to drive, V _{DHV} = 1V, V _{DLV} = -1V (Notes 4, 15)	1.4	2.4	3.4	ns
		t _{LH} vs. t _{HL} (Note 4)		±40	±80	
		Drivers within package, same edge		±40		ps
Propagation-Delay Match		Drive to high impedance vs. high impedance to drive, V _{DHV} = 1V, V _{DLV} = -1V (Note 16)		±0.5		
		High impedance vs. data		±0.5		ns
		Drive to term vs. term to drive, V_{DHV} = 3V, V_{DLV} = 0V, V_{DTV} = 1.5V (Note 17)		±0.3		
		Terminate vs. data		±0.8		
Propagation-Delay Channel Match		Differential mode, VD _{HV} = 1V, V _{DLV} = 0V, channel 1 inverted, DIFFERENTIAL0 = 1, INVERT1 = 1		±40		ps

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	TYP	MAX	UNITS
Propagation-Delay Temperature Coefficient		V _{DHV} = 3V, V _{DLV} = 0V (Note 4)			3	5	ps/°C
			V_{DHV} = 1V, V_{DLV} = 0V, 1ns to 24ns pulse width (Note 4)		±25	±60	
Propagation-Delay Change		Change vs. pulse width (Note 18)	V_{DHV} = 3V, V_{DLV} = 0V, 1ns to 24ns pulse width (Note 4)		±35	±60	
			V_{DHV} = 5V, V_{DLV} = 0V, 1.5ns to 23.5ns pulse width		±100		ps
		Peak-to-peak change vs. common mode, V _{DHV} - V _{DLV} = 1V, V _{DHV} = 0 to 6V, using a DC-blocking capacitor (Note 4)			50	60	
		0.2V _{P-P} programmed, V _{DHV} = 0.2V, V _{DLV} = 0V, 20% to 80%			275		
Rise-and-Fall Time		1V _{P-P} programmed V _{DLV} _ = 0V, 10% t		330	450	550	
		3V _{P-P} programmed V _{DLV} _ = 0V, 10% t	d, V _{DHV} _ = 3V, o 90%, trim condition	500	650	800	ps
		5V _{P-P} programmed V _{DLV} _ = 0V, 10% t	d, V _{DHV} _ = 5V, o 90% (Note 4)	800	1000	1200	
		0.2V _{P-P} programm V _{DLV} _= 0V, 20% t			±40		
Rise-and-Fall Time Matching		1V _{P-P} programmed V _{DLV} _ = 0V, 10% t	1V _{P-P} programmed, V _{DHV} = 1V, V _{DLV} = 0V, 10% to 90%		±50	±130	ps
		3V _{P-P} programmed V _{DLV} _= 0V, 10% t			±50	±200	P3
		5V _{P-P} programmed V _{DLV} _ = 0V, 10% t			±50		

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	TYP	MAX	UNITS
			SC1 = 0, SC0 = 1, V _{DHV} = 3V, V _{DLV} = 0V, 20% to 80%		75		
Slew Rate		Relative to SC1 = SC0 = 0	SC1 = 1, SC0 = 0, V _{DHV} = 3V, V _{DLV} = 0V, 20% to 80%		50		%
			SC1 = 1, SC0 = 1, V _{DHV} = 3V, V _{DLV} = 0V, 20% to 80%		25		
Minimum Pulse Width			0.2V _{P-P} programmed, V _{DHV} = 0.2V, V _{DLV} = 0V (Note 19)		800		
		Positive or negative			950		ps
			$3V_{P-P}$ programmed, V_{DHV} = 3V, V_{DLV} = 0V (Notes 4, 19)		1000	1450	
			5V _{P-P} programmed , V _{DHV} = 5V, V _{DLV} = 0V (Note 19)		1300		
			$\begin{array}{c} 0.2V_{P-P} \text{ programmed},\\ V_{DHV} = 0.2V,\\ V_{DLV} = 0V \end{array}$		1100		
		To 95% _{P-P} (Note 20)	$1V_{P-P}$ programmed, $V_{DHV_} = 1V, V_{DLV_} = 0V$		900		
		(Note 20)	$3V_{P-P}$ programmed, V_{DHV} = 3V, V_{DLV} = 0V		800		
Data Rate			$5V_{P-P}$ programmed, $V_{DHV_} = 5V, V_{DLV_} = 0V$		680		Mbps
			$0.2V_{P-P}$ programmed, V_{DHV} = 0.2V, V_{DLV} = 0V		1200		
		То 90% _{Р-Р}	$1V_{P-P}$ programmed, V_{DHV} = 1V, V_{DLV} = 0V		1100		
		(Note 21)	3V _{P-P} programmed, V _{DHV} _= 3V, V _{DLV} _= 0V		900		
			$5V_{P-P}$ programmed, V_{DHV} = 5V, V_{DLV} = 0V		720		

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS
Rise-and-Fall Time		Drive to term, = 1.5V, measu	V _{DHV} _= 3V, V _D ured 10% to 90%	_{LV} _ = 0V, V _{DTV} _ of waveform	300	500	1000	
Rise-and-Fair fime		Term to drive, = 1.5V, measu	V _{DHV} _ = 3V, V _D ured 10% to 90%	_{LV} _ = 0V, V _{DTV} _ of waveform	300	600	850	ps
HIGH-SPEED COMPARATORS								
DC CHARACTERISTICS				r				
Input-Voltage Range		(Notes 2, 22)	· · · · · ·				+6.5	V
Differential Input Voltage		V _{DUT} - V _{CH}	/_, V _{DUT} V _{CLV}	(Note 23)			±8	V
Input Offset Voltage		V _{DUT} _ = 1.5V	,			±1	±5	mV
Input-Voltage Temperature Coefficient		(Notes 4, 24)				±50	±175	μV°C
Common-Mode Rejection Ratio	CMRR	V _{DUT} = -1.5 ^v	V, 6.5V (Note 25)		50	55		dB
		0 to 3V, V _{DUT}	= 0, 1.5V, 3V			±1	±5	
Linearity Error (Note 26)		Full range, V _E		.5V, 3V, 6.5V		±1	±10	mV
Power-Supply Rejection Ratio	PSRR		and 6.5V (Notes		50	66		dB
		HYST0	HYST1	HYST2				
		0	0	0		0		1
		0	0	1		2		
		0	1	0		4]
Hysteresis		0	1	1		6		mV
		1	0	0		8		
		1	0	1		10		ļ
		1	1	0		12		
		1	1	1		15		
AC CHARACTERISTICS (Notes	4, 28, 29, 3	1				-		
Minimum Pulse Width		(Note 31)				0.50	0.65	ns
Propagation Delay					0.5	0.9	1.5	ns
Propagation-Delay Temperature Coefficient						1.7		ps/°C
Propagation-Delay Match		High/low vs. lo delta for each	ow/high, absolute comparator	e value of		±10	±85	ps
Propagation-Delay Dispersion vs. Common-Mode Input		-1.4V to +6.4V	-1.4V to +6.4V (Note 32)			40	55	ps _{P-P}
Propagation-Delay Dispersion vs. Duty Cycle		0.6ns to 24.4r pulse width	0.6ns to 24.4ns pulse width, relative to 5ns pulse width			±25	±40	ps
Propagation-Delay Dispersion vs. Slew Rate		1V/ns to 6V/n	s, relative to 2V/r	ns (Note 33)		±30	±55	ps

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIO	MIN	TYP	MAX	UNITS	
		V _{DTV} = 0.5V, driver termir	nated (Note 34)	1000	1500		
Equivalent 20–80 Bandwidth		Driver high impedance			700		MHz
Cable-Droop Compensation,		1V swing, rise/fall time =	CDRP = 0b000		0		0/
Peaking		500ps, DRV terminated	CDRP = 0b111		10		%
LOGIC OUTPUTS (CH_, NCH_,	CL_, NCL_	collector output, RL = 50Ω	internal pullup to C	CTV)			
Termination Voltage	CTV_			0		3.5	V
Output High Current					0		mA
Output Low Current					16		mA
Output-Voltage Compliance		Set by I _{OUT_} , R _{TERM_} and	V _{CTV}	-0.5		CTV_	V
Differential Rise Time		20% to 80% (Note 4)			200	400	ps
Differential Fall Time		20% to 80% (Note 4)			200	400	ps
Termination Resistor Value		CTV_ to CH_, NCH_, CL_,	NCL_	48		52	Ω
Output High Voltage	V _{OH}	With output resistors, R _{TEF} (Note 56)	RM to V _{CTV}	CTV 0.1	CTV 0.02	CTV_	V
Output Low Voltage	V _{OL}	With output resistors, R _{TEF} (Note 56)	_{RM} to V _{CTV}	CTV 0.55	CTV 0.4	CTV 0.35	V
Output-Voltage Swing		With output resistors, 50Ω nominal trim (Note 56)		350	400	450	mV
DYNAMIC CLAMPS		·					
CPHV_ Functional Clamp Range		I _{DUT} = -1mA, V _{CPLV} = -1	1.5V (Note 2)	-0.3		+6.5	V
CPLV_Functional Clamp Range		$I_{\text{DUT}} = 1 \text{mA}, V_{\text{CPHV}} = 6.$	5V (Note 2)	-1.5		+5.3	V
CPHV_ Maximum Programmable Voltage		I _{DUT} = 0 (Note 23)		7.2	7.5		V
CPLV_ Minimum Programmable Voltage		I _{DUT} = 0 (Note 23)			-2.5	-2.2	V
o <i>m</i>		I _{DUT} = -1mA, V _{CPHV} = 1.	.5V, V _{CPLV} = -1.5V			±10	
Offset Voltage		I _{DUT} = 1mA, V _{CPLV} = 1.5	5V, V _{CPHV} = 6.5V			±10	mV
Offset-Voltage Temperature Coefficient		V _{CPHV} = V _{CPLV} = 1.5V			0.5		mV/°C
Power Supply Principal		I _{DUT} _ = -1mA, V _{CPHV} _ = 1.5V, V _{CPLV} = -1.5V (Note 5)		40			ar
Power-Supply Rejection Ratio		I _{DUT} = +1mA, V _{CPLV} = 1 V _{CPHV} = 6.5V (Note 5)	.5V,	40			dB
High Clamp Voltage Gain		V _{CPHV} = -0.3V, 6.5V		0.998		1.002	V/V
Low Clamp Voltage Gain		V _{CPLV} _= -1.5V, 5.3V		0.998		1.002	V/V
Voltage-Gain Temperature Coefficient					100		ppm/°0

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Lincority		I _{DUT} _= -1mA, V _{CPHV} _= -0.3V, 1.5V, 3.25V, 5V, 6.5V			±30	mV	
Linearity		I _{DUT} = 1mA, V _{CPLV} = -1.5V, 0.5V, 2.25V, 4V, 5.3V			±30	mv	
Statia Output Ourrant		$V_{CPHV} = 0V, V_{CPLV} = -1.5V,$ R _L = 0 Ω to 6.5V	-120		-60	mA	
Static Output Current		V_{CPLV} = 5V, V_{CPHV} = 6.5V, R _L = 0 Ω to -1.5V	60		120	mA	
High Clamp Resistance		V _{CPHV} _ = 0V, V _{CPLV} _ = -1.5V, I _{DUT} _ = -5mA and -15mA	48		55	Ω	
Low Clamp Resistance		V _{CPHV} _ = 6.5V, V _{CPLV} _ = 0V, I _{DUT} _ = 5mA and 15mA	48		55	Ω	
High Clamp-Resistance Variation		I _{DUT} _ = -20mA and -30mA, V _{CPHV} _ = 2.5V, V _{CPLV} _ = -1.5V (Note 35)		±5		Ω	
Low Clamp-Resistance Variation		I _{DUT} _ = 20mA and 30mA, V _{CPLV} _ = 2.5V, V _{CPHV} _ = 6.5V (Note 35)		±5		Ω	
Overshoot and Undershoot		(Note 36)		700		mV	
PARAMETRIC MEASUREMENT	UNIT (PMU)					
DC ELECTRICAL CHARACTER	ISTICS						
FORCE VOLTAGE (RL \geq 10M\Omega,	V _{IN} _ = 2.5V	, unless otherwise noted)					
		I _{DUT_} = 0	-1.5		+6.5		
		I _{DUT} = +FSR/2, range A	-1.5		+4.5		
Force-Voltage Output Range (Note 2)	V _{IN}	I _{DUT} = +FSR/2, ranges B–E	-1.5		+6.1	V	
(Note 2)		I _{DUT} = -FSR/2, range A	1.1		6.5	1	
		I _{DUT} = -FSR/2, ranges B–E	-1.1		+6.5		
Force-Voltage Offset Error		I _{DUT} = 0	-5		+5	mV	
Force-Voltage PSRR		(Note 5)	-5		+5	mV/V	
Force-Voltage Load Regulation		I _{DUT_} = +FSR/2 to -FSR/2 using SENSE_ input		±200		μV	
Force-Voltage Offset Temperature Coefficient		(Note 37)		±50		µV/°C	
Force-Voltage Gain Error		V _{IN} = -1.5V to +6.5V, nominal gain = +1	-0.1		+0.1	%	
Force-Voltage Gain Temperature Coefficient				±10		ppm/°C	
Force-Voltage Linearity Error		V _{IN} = -1.5V, 0.5V, 2.5V, 4.5V 6.5V (Notes 38, 39)	-0.02		+0.02	%FSR	

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Force-Voltage Range Switching Glitch		From any two adjacent ranges, C _{DUT} = 100pF, I _{DUT} = (±0.25 x FSR) of lower current range (Note 4)			0.3	V
MEASURE CURRENT (Measure	d at MEAS_	in FIMI Mode, V _{IN} = V _{IIOS} = V _{DUT} = 2.5V)				
Measure-Current Offset	I _{MOS}	(Note 38)	-1		+1	%FSR
Measure-Current PSRR		I _{DUT} = 0 (Note 5)	-0.05		+0.05	%FSR/V
Measure-Current Offset Tem- perature Coefficient				±20		ppmFSR/ °C
Measure-Current Gain Error		Ranges A, B, C	-1.0		+1.0	- %
Measure-Guitent Gain Endi	IMGE	Ranges D, E	-1.1		+1.1	70
Measure-Current Gain Tempera-		Ranges B–E		±20		nnm/°C
ture Coefficient		Range A		+100		- ppm/°C
		Ranges B–E, I _{DUT} _ = -FSR/2, -FSR/4, 0, FSR/4, FSR/2 relative to end points	-0.02		+0.02	
Measure-Current Linearity Error (Note 38)	I _{MLER}	Range A, I _{DUT} = -30mA, -15mA, 0, 15mA, 30mA, relative to end points	-0.03		+0.03	_
		Range A, I _{DUT} = -FSR/2, -FSR/4, 0, FSR/4, FSR/2 relative to end points	-0.06		+0.06	
- FOR M		V _{IIOSMIN} = 2V (Note 40)		6		
+FSR Measure Output Voltage		V _{IIOSMAX} = 4V (Note 40)		8		- V
ESB Magaura Output Valtaga		V _{IIOSMIN} = 2V (Note 40)		-2		- v
-FSR Measure Output Voltage		V _{IIOSMAX} = 4V (Note 40)		0		
Rejection of Output Measure Error Due to Common-Mode Sense Voltage	CMVR _{LER}	I _{DUT} = 0, V _{IN} = -1.5V to +6.5V, percent FSR change at MEAS_ per volt change at DUT_			0.003	%FSR/V
X		Range E, R_E = 500kΩ	-2		+2	
		Range D, R_D = 50kΩ	-20		+20	μA
Measure-Current Range (Note 2)		Range C, R_C = $5k\Omega$	-200		+200	
		Range B, R_B = 500Ω	-2		+2	- mA
		Range A, R_A = 20Ω (Note 41)	-50		+50	
FORCE CURRENT (V _{DUT} = VI _N	N_ = V _{IIOS} =	2.5V, unless otherwise noted)				
Input-Voltage Range For Setting		V _{IIOSMIN} = 2V		6		V
Force Current to +FSR/2		V _{IIOSMAX} = 3.5V		7.5		, v
Input-Voltage Range For Setting		V _{IIOSMIN} = 2V		-2		V
Force Current to -FSR/2		V _{IIOSMAX} = 3.5V		-0.5		v v
Current-Sense Amplifier Offset Voltage Input		Relative to V _{DGS}	2.0	2.5	3.5	V

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Force-Current Offset		(Note 38)	-0.1		+0.1	%FSR
Force-Current Offset PSRR		(Note 5)	-0.2		+0.2	%FSR/V
Force-Current Offset-Temperature Coefficient		(Note 37)		±20		ppmFSR / °C
Force-Current Gain Error		V _{IN} _ = -1.5V and 6.5V	-0.1		+0.1	%
Force-Current Gain-Temperature		Ranges B–E		±20		nnm/°C
Coefficient		Range A		-100		ppm/°C
		Ranges B–E, VI _N _= -1.5V, 0.5V, 2.5V, 4.5V, 6.5V relative to end points of I _{DUT} _	-0.025		+0.025	
Force-Current Linearity Error (Notes 38, 39)		Range A, I _{DUT} ±30mA, V _{IN} = 0V, 1V, 1.3V, 2.5V, 3.7V, 4.9V relative to end points of IDUT_	-0.03		+0.03	%FSR
		Range A, V _{IN} = -1.5V, 0.5V, 2.5V, 4.5V, 6.5V relative to end points of I _{DUT}	-0.06		+0.06	
Rejection of Output Error Due to Common-Mode DUT_ Voltage		Percent of FSR change of the force current per volt change in DUT_, V_{DUT} = -1.5V to 6.5V			0.007	%FSR/V
Force-Current Range (Note 2)		Range E, R_E = 500kΩ	-2		+2	
		Range D, R_D = 50kΩ	-20		+20	μΑ
		Range C, R_C = $5k\Omega$	-200		+200	
		Range B, R_B = 500Ω	-2		+2	
		Range A, R_A = 20Ω, (Note 41)	-50		+50	mA
MEASURE VOLTAGE (Measure	d at MEAS_	in FVMV mode, V_{VIOS} = 0, V_{DUT} = V_{IN} = V_{IIC}	_S = 2.5V)			
Measure-Voltage Offset			-25		+25	mV
Measure-Voltage PSRR		(Note 5)	-5		+5	mV/V
Measure-Voltage Offset Temperature Coefficient				±100		µV/°C
Measure-Voltage Gain Error		V _{DUT} = -1.5V and 6.5V, nominal gain = +1	-1		+1	%
Measure-Voltage Gain-Temperature Coefficient			±10		ppm/°C	
Measure-Voltage Linearity Error		V _{IN} = -1.5V, 0.5V, 2.5V, 4.5V, 6.5V relative to end points. (Note 38)	-0.02		+0.02	%FSR
Measure Output Voltage (Note 42)		For V _{DUT} = 6.5V, measure voltage input range = -1.5V to 6.5V, V _{VIOS} offsets the range at MEAS_	6.5 + V _{VIOS}		S	V
		For V _{DUT} = -1.5V -1.5 + V _{VIOS}		os	1	
Voltage Sense Amp Offset Voltage Input	V _{IOS}	Relative to DUT ground (Note 42)	0		1.5	V

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
FORCE OUTPUT	·	·					
		Range A, V _{IN} _= -1.5V, V _{DUT} _= 6.5V, CLENABLE = 0	-100		-55		
Short-Circuit Current Limit in FV Mode		Range B, V _{IN} _ = -1.5V, V _{DUT} _ = 6.5V, CLENABLE = 0	-8		-3		
		Range A, V _{IN} _= 6.5V, V _{DUT} _= -1.5V, CLENABLE = 0	55		100	mA	
		Range B, V _{IN} _ = 6.5V, V _{DUT} _ = -1.5V, CLENABLE = 0	3		8		
Force-to-Sense Resistor	R _{FS}	(Note 4)		10		kΩ	
SENSE INPUT							
		All modes except VHHP driver mode	-1.5		+6.5		
Input-Voltage Range		VHH_ driver-mode compliance, SENSE open (Note 43)	-1.5		+13.0	V	
Input Bias Current		V _{SENSE} = -1.5V and 6.5V, sense input enabled	-5		+5	nA	
COMPARATOR INPUTS (VIN_ =	V _{IIOS} = 2.5\	/, HYSTEN = 0, unless otherwise noted)					
Input Voltago Bango		Maximum at V _{IIOS} = 3.4V, MI mode		+7.4		V	
Input-Voltage Range		Minimum at V _{IIOS} = 2V, MI mode		-2.2		V	
FIMV Offset Voltage		V _{DUT} = 2.5V (Note 44)	-5		+5	mV	
FVMI Offset Current		IVMAX_ = IVMIN_ = 2.5V (Note 44)	-0.1		+0.1	%FSR	
Hysteresis		HYSTEN = 1, functionally tested in MV mode		±25	±50	mV	
VOLTAGE CLAMPS (FI mode, C	LENABLE_	= 1)					
Clamp Voltage Range		(Note 45)	-1.5		+6.5	V	
Linear FI DUT_ Range		FI loop not influenced when V _{DUT} _0.5V from voltage clamps	V _{CLAMPL} + 0.5	o_ Vc	LAMPHI_ ⁻ 0.5	V	
Clamp Voltage Accuracy		V _{CLAMPHI} = V _{CLAMPLO} = -1.5V, 0V, 1.5V, 2.5V, 4V, 5V, 6.5V	-20		+20	mV	
CURRENT CLAMPS (FV mode,	CLENABLE	_ = 1)	1				
	VCLAMPHI_MAX	Clamp current = I _{CLAMPHI} = (V _{CLAMPHI} - V _{IIOS})/R _{RANGE} (sourcing)	V _{IIOS} + 1.3V				
Input Control Voltage Range	VCLAMPLO_MIN		V _{IIOS} - 1.3V		V		

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CON	IDITIONS	MIN 1	ГҮР	MAX	UNITS	
		Range E, R_E = 500	kΩ	-2.2		+2.2		
		Range D, R_D = 50k	Ω	-22		+22	μΑ	
CLAMP CURRENT RANGE (NOTE 45)		Range C, R_C = 5kΩ	2	-220		+220	1	
(NOTE 43)		Range B, R_B = 500	Ω	-2.2		+2.2		
		Range A, R_A = 20Ω		-55		+55	mA	
LINEAR FV I _{DUT} _RANGE		FV loop not influence FSR from current cla	ed when I _{DUT} _ ≥ 10% mps	I _{CLAMPLO} + 10%FSR	I _{CLA} - 10	MPHI_ %FSR	А	
CLAMPCURRENTACCURACY		I _{CLAMPHI_} = I _{CLAN} (0.50 x FSR) and (0.4 and (0.50 x FSR)	-0.5		+0.5	%FSR		
COMPARATOR OUTPUTS (Note	e 46)	•						
OUTPUT HIGH VOLTAGE		$R_{PULLUP} = 1k\Omega$ to V	DD	V _{DD} - 0.	.2		V	
OUTPUT LOW VOLTAGE		$R_{PULLUP} = 1k\Omega$ to V	DD			0.4	V	
HIGH-IMPEDANCE STATE LEAKAGE CURRENT						±1		
HIGH-IMPEDANCE STATE OUTPUT CAPACITANCE				6		pF		
AC ELECTRICAL CHARACTER unless otherwise noted; setting FORCE VOLTAGE								
			Range E, R_E = $500k\Omega$		140			
		V _{IN} = -1.5V, 6.5V	Range D, R_D = $50k\Omega$		30		μs	
		VIN1.50, 0.50	Range C, R_C = $5k\Omega$		20	30		
Settling Time			Range B, R_B = 500Ω		20			
		V _{IN} _ = -1V to +6.5V	Range A, R_A = 20Ω , R _{DUT} = 200Ω to $2.5V$ (Note 41)		20			
Maximum Stable Load Capaci- tance				2	2500		pF	
FORCE VOLTAGE/MEASURE C	URRENT							
		Range E, R_E = 500	kΩ		300			
		Range D, R_D = 50k	Ω		40		µs	
Settling Time		Range C, R_C = 5kΩ	2		20	35		
Settling Time	1	Range B, R_B = 500Ω			20			
5		Range B, $R_B = 500$	Ω		20		μ3	

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	C	MIN	TYP	MAX	UNITS	
Range-Change Switching		In addition to force-voltage and measure-current settling times, range A to range B (Note 47)			20		μs
FORCE CURRENT (Measured at	MEAS_ in	FIMI Mode)					
			Range E, R_E = $500k\Omega$		500		
		V _{IN} = -1.5V,	Range D, R_D = $50k\Omega$		100]
		+6.5V	Range C, R_C = $5k\Omega$		25	35	
Settling Time			Range B, R_B = 500Ω		20		μs
		V _{IN_} = -1.1V to +4.1V	Range A, R_A = 20Ω R _{DUT} _ = 200Ω to 2.5V (Note 41)		20		
FORCE CURRENT/MEASURE V	OLTAGE (N	ote 48)					
		Range E, R_E =	500kΩ		1900		
		Range D, R_D = 50kΩ			200		
Settling Time		Range C, R_C =		30	40		
		Range B, R_B =	500Ω		20		μs
		Range A, R_A = 2 R _{DUT} = 200 Ω to		20			
Range-Change Switching			e-current/measure-voltage ge A to range B. (Note 47)		20		μs
SENSE INPUT TO MEASURE OU	JTPUT PAT	H (Note 49)					1
Propagation Delay		Measured at 90% slew rate ≤ 2V/µs	of output, SENSE input		0.07		μs
MEASURE OUTPUT		-					1
High-Impedance Leakage Current		V _{MEAS} = -1.5V,	2.5V, 6.5V	-10		+10	nA
HIZMEASP_ True to High-Impedance Time			GND, V _{SENSE} = 2.5V, mea- % point of		80		ns
HIZMEASP_ False to Active Time		R_{MEAS} = 5kΩ to GND, V _{SENSE} = 2.5V, measured from the 50% point of HIZMEASP_ to 10% of output			40		ns
Maximum Stable Load Capacitance					1000		pF
FORCE OUTPUT							
LLEAKP_ True to Low-Leak Time		V_{IN} = 1V, R_{DUT} = R_{RANGE} to GND, FVMI mode, measured from the 50% point of LLEAKP_ to 90% of output			0.3		μs

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS
LLEAKP_ False to Active Time		V _{IN} _= 1V, R _{DUT} _= R _{RA} mode, measured from the LLEAKP_ to 10% of outp		0.3		μs	
COMPARATORS (C _{CMP} = 20pF	, R _{PULLUP}	= 1kΩ to V _{DD})					
Rise Time		20% to 80%			35		ns
Fall Time		80% to 20%			1.5		ns
Disable True to High Impedance		Measured from the 50% (or LOAD) to 10% of the			25		ns
Disable False to Active		Measured from the 50% (or LOAD) to 90% of the			20		ns
ACTIVE LOAD							
DC CHARACTERISTICS (VVCON	1_= 2.5V, V	_{DHV} = V _{DLV} = 6V, unles	s otherwise noted)				
VCOM_ Voltage Range	VCOM_			-1.5		+6.5	V
VCOM_ Offset Voltage		I _{DUT} _=0mA				±5	mV
Differential Voltage Range		V _{DUT} - V _{VCOM}		-8		+8	V
Offset Voltage-Temperature Coefficient				100		µV/°C	
VCOM_ Voltage Gain		V _{VCOM} = 0, 4.5V		0.998	1	1.002	V/V
VCOM_ Voltage-Gain Tempera- ture Coefficient					-10		ppm/°C
VCOM_ Linearity Error		V _{VCOM} = -1.5V, 0V, 1.5 relative to end points	V, 3V, 4.5V, 6.5V		±3	±15	mV
VCOM_ Output-Voltage Power-Supply Rejection Ratio		(Note 5)		40			dB
Sink or Source Output		V _{DUT} = 3V, 6.5V with V _{VCOM} = -1.5V or	I _{SOURCE} = I _{SINK} = 20mA	30			kΩ
Resistance		V_{DUT} = -1.5V, 2V with V_{VCOM} = 6.5V	I _{SOURCE} = I _{SINK} = 1mA	250			K12
Linear Region Output Resistance		I _{DUT} = ±10mA			12	18	Ω
		I _{SOURCE} = I _{SINK} = 10mA, 80% commutation			400		
Dead-Band		95% I _{SOURCE} to 95% I _{SINK} , IS _{OURCE} = I _{SINK} = 20mA			700	900	mV

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SOURCE CURRENT (V _{DUT} = -1	V, V _{VCOM}	= 6V, V _{VLDL} = 0V, V _{VLDH} = 6V, unless other	wise note	d)		
Source Current Output Range		V _{VLDH} = 0 to 6V (Note 2)	0		20	mA
Source Current Offset		V _{VLDH} = 300mV (1mA)	-20		+20	μA
Source Current Programming Gain		V _{VLDH} = 0.3V, 5.4V (1mA, 18mA)	3.326	3.333	3.340	mA/V
Source Current Temperature Coefficient				-10		µA/°C
Source Current Power-Supply Rejection Ratio		(Note 5)			±60	μA/V
Source Current Linearity		V _{VLDH} = 0V, 0.1V, 0.3V, 1.5V, 3V, 5.4V, 6V, relative to 0.3V and 5.4V			±80	μA
SINK CURRENT (VD _{UT} = 6V, V	VCOM_ = -1	V, V _{VLDL} = 6V, V _{VLDH} = 0V, unless otherwise	e noted)			
Sink Current Output Range		V _{VLDL} = 0 to 6V (Note 2)	0		20	mA
Sink Current Offset		V _{VLDL} = 300mV (1mA)	-20		+20	μA
Sink Current Programming Gain		V _{VLDL} = 0.3V, 5.4V (1mA, 18mA)	3.326	3.333	3.340	mA/V
Sink Current Temperature Coefficient				10		µA/°C
Sink Current Power-Supply Rejection Ratio	PSRR	(Note 5)			±60	μA/V
Sink Current Linearity		V _{VLDL} = 0V, 0.1V, 0.3V, 1.5V, 3V, 5.4V, 6V, relative to 0.3V and 5.4V			±80	μA
AC CHARACTERISTICS ($Z_L = 5$	0Ω to GND,	V _{VLDH} = V _{VLDL} = 6V, TMSEL_ = LDDIS_ = L	DCAL_=	0)		1
Transition Time to/from Inhibit via RCV/NRCV	tEN	Measured from 50% crossing of RCV/NRVC to 10% level of output waveform; V_{VCOM} = -1.5V and 1.5V		2		ns
Spike During Enable/Disable Transition		V _{VCOM} = 0V (Note 4)		200	300	mV
TEMPERATURE MONITOR		·				
Nominal Voltage		$T_J = +70^{\circ}C, R_L \ge 10M\Omega$		3.43		V
Temperature Coefficient				10		mV/°C
Output Resistance				15		kΩ
DIGITAL I/O						
DIFFERENTIAL CONTROL INPL	JTS (DATA_	, NDATA_, RCV_, NRCV_)				
Input High Voltage			-1.6		+3.5	V
Input Low Voltage			-2.0		+3.1	V
Differential Input Voltage			±0.15		±1.0	V

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Termination Resis- tance		Between RCV and NRCV, DATA, and NDATA, tested at I _{RCV_/NRCV} = ±4mA (Note 50)	96		104	Ω
SINGLE-ENDED CONTROL INP	UTS (CS , S	CLK, DIN, RST, LOAD, ENVHHP_, LLEAKP_,	HIZMEAS	P_)		
Input High			2/3 x	V _{DD}	V _{DD}	V
Input Low			-0.1	1/3 :	k V _{DD}	V
Input Bias Current			-25		+25	μA
SINGLE-ENDED OUTPUT (DOU	T)					
Output High		Ι _{ΟΗ} = 25μΑ	V _{DD}	- 0.15		V
Output Low		Ι _{ΟL} = -25μΑ		DGNE) + 0.15	V
SERIAL PORT TIMING						
SCLK Frequency	f				50	MHz
SCLK Pulse-Width High	t _{CH}		8			ns
SCLK Pulse-Width Low	t _{CL}		8			ns
CS Low to SCLK High Setup	t _{CSS0}		3.5			ns
SCLK High to \overline{CS} Low Hold	t _{CSH0}		3.5			ns
CS High to SCLK High Setup	t _{CSS1}		3.5			ns
SCLK High to $\overline{\text{CS}}$ High Hold	t _{CSH1}		3.5			ns
DIN to SCLK High Setup	t _{DS}		3.5			ns
DIN to SCLK High Hold	t _{DH}		3.5			ns
CS High Pulse Width	t _{CSWH}		40			ns
LOAD Low Pulse Width	t _{LDW}		20			ns
RST Low Pulse Width	t _{RST}		20			ns
CS High to LOAD Low Hold Time	t _{CSHLD}		20			ns
SCLK to DOUT Delay	t _{DO}				40	ns
COMMON FUNCTIONS						
Operating Voltage Range		(Note 2)	-1.5		+13.0	V
		V _{DUT} = 0V, 1.5V, 3V	-2		+2	
DUT_ High-Impedance Leakage		$V_{CLV} = V_{CHV} = 6.5V, V_{DUT} = -1.5V$	-5		+5	μA
		V _{CLV} = V _{CHV} = -1.5V, V _{DUT} = 6.5V	-5		+5	

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		V _{DUT} = 0V, 1.5V, 3V, T _J < +90°C	-10		+10		
DUT_ Low-Leak Mode Leakage		V _{CLV} = V _{CHV} = 6.5V, V _{DUT} = -1.5V, TJ < +90°C	-10		+10	nA	
		V _{CLV} = V _{CHV} = -1.5V, V _{DUT} = 6.5V, T _J < +90°C	-10		+10		
		Driver in terminate mode (Note 4)		3.4	4.3		
DUT_ Combined Capacitance		Driver in high impedance, PMU in high imped- ance		8		pF	
Low-Leakage Enable Time		LLEAKP_ low to DUT_ = low leak		20		μs	
Low-Leakage Disable Time		LLEAKP_ high to normal operation		20		μs	
POWER SUPPLY							
Positive Supply Voltage	V _{CC}		9.5	9.75	10.5	V	
Negative Supply Voltage	V _{EE}		-5.2	-4.75	-4.5	V	
Logic Supply Voltage	V _{DD}		2.7	3.3	5.0	V	
VHHP Supply Voltage	V _{HHP}		17	17.5	18	V	
Positive Supply Current	ICC	(Note 51)		120	135	mA	
Negative Supply Current	IEE	(Note 51)		245	260	mA	
Logic Supply Current	I _{DD}	(Note 51)		4.5	7	mA	
VIII D Sumply Current	Ι _Η	(Note 51)		1.5	2.0	mA	
VHHP Supply Current		VHH mode, no load		45	50	ma	
Power Dissipation per Channel		Includes CTV power at VC _{TV1} = V _{CTV2} = 1.4V (Note 51)		1.2	1.35	W	
ANALOG INPUTS	<u>.</u>						
DUT GROUND SENSE							
Input Range	V _{DGS}	Relative to AGND (Note 52)	-150		+150	mV	
Input Bias Current		V _{DGS} = 0V	-10		+10	μA	
Gain		DHV_, DLV_, DTV_, CPHV_, CPLV_, VHH_	0.985	0.990	1.005	V/V	
Gain		All other levels and MEAS_ output	0.995	1.000	1.005	V/V	
2.5V REFERENCE		1				r	
Nominal Voltage	V _{REF}	(Notes 53, 54)		2.5		V	
Input Bias Current			-2		+2	μA	
ANALOG BUS (V _{DUT} = -1.5V te	o +6.5V, PM	U-F = PMU-S = -1.5V to +6.5V, unless otherwis	e noted)				
PMU-F Switch		I _{SWITCH} = ±2.5mA, V _{DUT} = -1.25V, 2.50V, 6.25V			100	Ω	
PMU-S Switch		I _{SWITCH} = ±100μA, V _{DUT} = -1.25V, 2.50V, 6.25V			2.5	kΩ	

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS
PMU-S Switch		$V_{PMU-F} = V_{PMU}$	$I_{SWITCH} = \pm 10\mu A$, $V_{DUT} = 6.5V$ to 13V, $V_{PMU-F} = V_{PMU-S} = 6.5V$ to 13V for V_{HH} level calibration				5	kΩ
PMU-F Path Current							±30	mA
PMU-F, PMU-S On-Leakage		F and S Indepe switches off	ndent, other cha	annel	-10	±5	+10	nA
PMU-F, PMU-S Off-Leakage					-10	±1	+10	nA
DIFFERENTIAL COMPARATOR	(DIFFEREN	ITIAL_ = 1)						
DC CHARACTERISTICS (V _{CLV}	= V _{CHV} =	0V, unless othe	rwise noted)					
– Input-Voltage Range	V _{DUT0} , V _{DUT1}	(Notes 22, 55)			-1.5		+6.5	V
Differential Threshold Voltage Range	CLV, CHV	Levels may be this range	safely programn	ned beyond	-1		+1	V
Differential Input Voltage		(Notes 22, 23)			-8		+8	V
Offset Error		$V_{DUT} = 0V$			-5		+5	mV
Gain		V _{DUTn} = 0V, V _E	DUTm = -1V, 1V		0.998	1	1.002	V/V
Linearity Error Relative to Straight Line from -1V to +1V		V _{DUTn} = 0V, V _E	V _{DUTn} = 0V, V _{DUTm} = -1V, -0.5V, 0, 0.5V, 1V				+5	mV
		HYST0	HYST1	HYST2				
		0	0	0		0]
		0	0	1		2]
		0	1	0		4		
Hysteresis		0	1	1		6		mV
		1	0	0		8		
		1	0	1		10		
		1	1	0		12]
		1	1	1		15		
Offset Temperature Coefficient		V _{DUTn} = 0V an	d V _{DUTm} = -1V,	1V (Note 4)	-150		+150	µV/°C
DC Power-Supply Rejection Ratio		V _{DUT} = 1.5V (Note 27)		50	66		dB
Common-Mode Rejection Ratio	CMRR	V _{DUT} = -1.5V and 6.5V, V _{CLV} = V _{CHV} = 0V (Note 25)			50	55		dB
AC CHARACTERISTICS (V _{CHV}	= V _{CLV} =	0V, driver termi	nated, unless o	therwise noted) (Note 4)			·
Minimum Pulse Width		(Note 31)				0.5	0.65	ns
Propagation Delay					0.5	1	1.5	ns
Propagation-Delay Match H/L vs. L/H, Individual Comparator							+25	ps

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS	
Change in Propagation Delay vs. Duty Cycle		500mV swing, 250mV ove pulse width, relative to PW	-45		+45	ps		
Propagation Delay vs. Common-Mode Voltage		V _{SWING} = 200mV, 100mV mode voltage = -1.4V to +				70	psP-P	
Propagation-Delay Temperature Coefficient					±3		ps/°C	
Propagation Delay vs. Slew Rate		1V/ns to 6V/ns, relative to	2V/ns			±50	ps	
Cable-Droop Compensation		1V swing, rise/fall time = 500ps	CDRP = 0b000 CDRP = 0b111		0 10		%	
DRIVER VHH		1	1	L		-		
DC CHARACTERISTICS								
Output-Voltage Range	VHH			0		13	V	
		VHH_ = 13V, IDUT_ = 10mA, V _{DUT} > 12.25V		+10			mA	
DC Output Current		VHH_ = 0V, I _{DUT} _ = -10m.	A, V _{DUT} _ < 0.75V			-10		
Current Limit		VHH_ = 13V, V _{DUT} _ = 0V V _{DUT} _ = 13V	±11		±25	mA		
Offset Voltage		VHH_ = 8V			±30	mV		
Gain		VHH_ = 8V, 12V		0.998	1	1.002	V/V	
Linearity Relative to 8V, 12V		VHH_ = 7V, 8V, 10V, 12V,	13V			±10	mV	
Linearity Relative to 2V, 12V		VHH_ = 0, 2V, 4V, 8V 12V	, 13V			±30	mV	
Output Resistance		I _{DUT} = ±2mA, VHH_ = 1\	/			75	Ω	
Output-Voltage Temperature Coefficient		VHH_ = 7V to 13V (Note 4	•)		±75	±500	µV/°C	
AC CHARACTERISTICS (R _L ≥ 1	0MΩ, C _{DUT}	= 100pF)						
VHH Rise/Fall Times		V _{DHV} = 3V, VHH_ = 13V,	10% to 90%			170	ns	
VIIII Oversheet (Note 4)		V _{DHV} = 3V to VHH_ = 13V rise				150		
VHH Overshoot (Note 4)						200	- mV	
LEVEL DACs								
Settling Time		Full-scale transition to with	nin 5mV		20		μs	
		I _{SOURCE} (VLDH_), I _{SINK}	(VLDL_)			±3.5	μA	
Differential Nonlinearity		VHH_, IIOS				±2	mV	
		All other levels				±1	mV	

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

- Note 1: Unless otherwise specified, all minimum and maximum specifications are production tested. All other specification test limits are guaranteed by design. All tests are performed at nominal supply voltages and after gain and offset calibration, unless otherwise specified.
- Note 2: Guaranteed by the associated linearity test.
- **Note 3:** Change in offset at any voltage over the operating range. Specification includes both gain and offset temperature effects.
- Limits have been simulated over the entire operating range and verified at worst-case conditions (V_{DHV} V_{DLV} > 200mV). **Note 4:** Guaranteed by design and characterization.
- Note 5: V_{CC} and V_{EE} independently varied over their full range.
- **Note 6:** DATA_ = 1V, V_{DHV} = 3V, V_{DLV} = 0V, V_{DTV} = 1.5V, I_{OUT} = ±30mA. Different values within the range of 48 Ω to 52 Ω are available by custom trimming (contact factory).
- **Note 7:** Resistance measurements are made using ±2.5mA current changes in the loading instrument about the noted value. Absolute value of the difference in measured resistance at the specified points, tested separately for each current polarity.
- Note 8: Rise time, unless otherwise specified for the differential inputs DATA_ and RCV_, is 250ps (10% to 90%) at 40MHz. (These conditions are for bench characterization. Final test conditions may differ from bench.)
- Note 9: ±8V step into AC-coupled 10Ω load. Current supplied for a minimum of 10ns. Guaranteed by design to be greater than or equal to DC drive current.
- Note 10: V_{DTV} = 1.5V, R_{S} = 50 Ω . External signal driven into a transmission line to produce a 0 to 3V edge at the comparator input with a 600ps rise time (10% to 90%). Measurement point is at the comparator input.
- Note 11: Measured between the 90% point of the driver output (relative to its final value) and the waveform settling to within the specified limit.
- **Note 12:** Propagation delays are measured from the crossing point of the differential input signals to the 50% point of expected output swing.
- Note 13: Average of two measurements for propagation-delay match, t_{LH} vs. t_{HL} .
- **Note 14:** Four measurements are made: DHV_ to high impedance, DLV_ to high impedance, high impedance to DHV_, and high impedance to DLV_. The worst of the four measurements is reported.
- Note 15: Average of four measurements of propagation-delay match, drive to high impedance vs. high impedance to drive. Measured from the crossing point of RCV/NRCV to the 50% point of the output waveform.
- Note 16: Average of four measurements for propagation-delay match, drive to term vs. term to drive. Measured from the crossing point of RCV/NRCV to the 50% point of the output waveform.
- Note 17: Four measurements are made: DHV_ to DTV_, DLV_ to DTV_, DTV_ to DHV_, and DTV_ to DLV_. The worst-case difference is reported.
- Note 18: Propagation-delay change is reported with respect to a 5ns pulse width.
- Note 19: At this pulse width, the output reaches at least 95% of its nominal (DC) amplitude. The pulse width is measured at DATA_ and NDATA_.
- Note 20: Maximum data rate in transitions/second. A waveform that reaches at least 95% of its programmed amplitude may be generated at half of this frequency.
- Note 21: Maximum data rate in transitions/second. A waveform that reaches at least 90% of its programmed amplitude may be generated at half of this frequency.
- Note 22: The comparators tolerate the V_{HH} produced by the driver; however, the specifications only apply to the -1.5V to +6.5V input range.
- Note 23: This specification is implicitly tested, by meeting the high-impedance leakage specification.
- Note 24: Change in offset at any voltage over operating range. Includes both gain (CMRR) and offset temperature effects.
- Note 25: Change in offset voltage over the input range.
- Note 26: Relative to straight line between 0 and 3V.
- Note 27: Change in offset voltage with power supplies independently varied over their full range. Both high and low comparators are tested.
- Note 28: All propagation delays measured from V_{DUT} crossing calibrated CHV_/CLV_ threshold to crossing point of differential outputs.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Electrical Characteristics (continued)

- Note 29: All delay specifications are measured with DUT_ (comparator input) as the reference.
- **Note 30:** 40MHz, 0 to 1V input to comparator, reference = 0.5V, 50% duty cycle, 250ps rise/fall time, $Z_S = 50\Omega$, driver in term mode with V_{DTV} = 0V, and hysteresis disabled, unless otherwise specified.
- **Note 31:** At this pulse width, the output reaches at least 90% of its nominal peak-to-peak swing. The pulse width is measured at the crossing points of the differential outputs. 250ps rise/fall time at DUT_. Timing dispersion specifications are not guaranteed.
- **Note 32:** V_{DUT} = 200mV_{P-P}, rise/fall time = 150ps, overdrive = 100mV, V_{DTV} = V_{CM}. Valid for common-mode ranges where the signal does not exceed the operating range. Specification is worst case (slowest–fastest) over the specified range.
- Note 33: For any input slew rate up to 6V/ns, no unusual behavior should be exhibited (i.e., glitching, changing polarity, etc.).
- **Note 34:** Input to comparator is 40MHz at 0 to 1V, 50% duty cycle, 250ps 10% to 90% rise time. EQ bandwidth = 0.22/(t_{TCMP}² + t_{TINPUT}²)^(1/2) where t_{TINPUT} and t_{TCMP} are the 20% to 80% transition time of the comparator input and reconstructed output.
- **Note 35:** Resistance measurements are made using ±2.5mA current changes in the loading instrument. Value reported is the absolute value of the difference in measured resistance over the specified range, tested separately for each current polarity.
- Note 36: Stimulus is 0 to 3V, 2.5V/ns square wave from far end of 3ns transmission line with R_S = 25Ω, clamps set to 0 and 3V.
- **Note 37:** Change in offset over the entire operating range. Includes both gain and offset temperature effects.
- **Note 38:** Interpretation of errors are expressed in terms of %FSR (percent of full-scale range) as a percentage of the end-point-toend-point range (i.e., for the ±2mA range, the full-scale range = 4mA and a 1% error = 40μA).
- **Note 39:** With clamps enabled, the linear DUT_ current range for force voltage is defined by the clamp-current-range specification, and the linear DUT_ voltage range for force current is defined by the linear FI V_{DUT} range specification.
- Note 40: For currents greater than +FSR/2, V_{MEAS} is greater than V_{IIOS} + 4V and for currents less than -FSR/2, V_{MEAS} is less than V_{IIOS} 4V.
- Note 41: This current is supplied by the driver.
- **Note 42:** V_{VIOS} may be programmed to greater than 1.5V to a maximum value of 2.5V; however, the maximum valid V_{DUT}_value must be reduced below 6.5V, as the maximum MEAS output is limited to 8V. Because V_{MEAS} = V_{DUT} + V_{VIOS}, then V_{DUT MAX} = 8V V_{VIOS} when V_{VIOS} > 1.5V.
- Note 43: Guaranteed by driver VHH_ and DLV_ linearity tests.
- Note 44: IVMAX and IVMIN do not have separate calibration registers for MI and MV modes. Specifications apply with calibration for each mode.
- Note 45: Guaranteed by the associated accuracy test.
- Note 46: The digital interface is compatible with 2.7V \leq V_{DD} \leq 5V CMOS logic.
- Note 47: See the Typical Operating Characteristics section.
- Note 48: FIMV settling times are a function of C_{DUT} and R_{RANGE}. Increased DUT_ capacitance will increase settling time.
- **Note 49:** The propagation delay time is guaranteed only over the force-voltage output range. Propagation delay is measured by holding V_{SENSE} steady and transitioning IVMAX_ or IVMIN_.
- Note 50: Default configuration has internal 100Ω resistors between DATA and NDATA, RCV and NRCV. Resistor terminations from DATA, NDATA, RCV, and NRCV to a separate pin are available by special request.
- **Note 51:** At nominal supply voltages. Total current for dual device. $R_1 \ge 10M\Omega$.
- **Note 52:** Increasing DGS beyond 0V requires a proportional increase in the minimum supply levels. Specified ranges for all DAC output levels are defined with respect to DGS.
- Note 53: The error of the external 2.5V reference impacts the accuracy of the DAC levels; a 1% error in the 2.5V reference will translate to a 1% error in the DAC level gain. Use a precision voltage reference, such as the MAX6225.
- Note 54: Generate the 2.5V external reference with respect to DGS (DUT ground sense).
- Note 55: Guaranteed by associated CMRR_ test.
- **Note 56:** The comparator outputs are normally source side-terminated with 50Ω on-die to CTV_ and at the receive side of the transmission path. The comparator outputs are tested with the 50Ω on-die source resistors only with limits relative to CTV_ twice the values indicated.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Typical Operating Characteristics

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Typical Operating Characteristics (continued)

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Typical Operating Characteristics (continued)

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Typical Operating Characteristics (continued)

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Typical Operating Characteristics (continued)

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Typical Operating Characteristics (continued)

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Typical Operating Characteristics (continued)

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Typical Operating Characteristics (continued)

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Pin Description

PIN	NAME	DESCRIPTION
1	MEAS0	Channel 0 Measure Output
2	DUTHI0	Channel 0 PMU High Comparator Output
3	DUTLO0	Channel 0 PMU Low Comparator Output
4	REF	DAC Reference Input
5	DGS	DUT Ground Sense Input
6, 35, 51	GND	Analog Ground
7	DOUT	Data Output. Serial-interface data output.
8	DGND	Digital Ground
9	CS	Chip-Select Input
10	SCLK	Serial-Clock Input
11	DIN	Data Input. Serial-interface data input.
12	VDD	Digital Power Supply
13	LOAD	Load Input. Serial-interface asynchronous load control.
14	RST	Reset Input. Serial-interface reset.
15	DUTLO1	Channel 1 PMU Low Comparator Output
16	DUTHI1	Channel 1 PMU High Comparator Output
17	MEAS1	Channel 1 Measure Output
18, 37, 40, 46, 49, 68	VCC	Positive Power Supply
19, 36, 39, 47, 50, 67	VEE	Negative Power Supply
20	HIZMEASP1	Channel 1 High-Impedance Enable Input for PMU Measure Output
21	LLEAKP1	Channel 1 Low-Leak Enable Input
22	NRCV1	Channel 1 Negative Receive Multiplexer Control Input
23	RCV1	Channel 1 Positive Receive Multiplexer Control Input
24	BV1	Channel 1 Bias Voltage Input
25	NDATA1	Channel 1 Negative Data Multiplexer Control Input
26	DATA1	Channel 1 Positive Data Multiplexer Control Input
27	ENVHHP1	Channel 1 High-Voltage Mode Enable Input
28	NCL1	Channel 1 Negative Low Comparator Output
29	CL1	Channel 1 Positive Low Comparator Output
30	CTV1	Channel 1 Comparator Termination Voltage
31	NCH1	Channel 1 Negative High Comparator Output
32	CH1	Channel 1 Positive High Comparator Output
33	SENSE1	Channel 1 PMU Sense Input
34, 42, 52	N.C.	No Connection. Not internally connected.
38	DUT1	Channel 1 DUT Connection

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Pin Description (continued)

PIN	NAME	DESCRIPTION
41	TEMP	Temperature Output
43	VHHP	High-Voltage Power Supply
44	PMU-F	PMU External Force Connection
45	PMU-S	PMU External Sense Connection
48	DUT0	Channel 0 DUT Connection
53	SENSE0	Channel 0 PMU Sense Input
54	CH0	Channel 0 Positive High Comparator Output
55	NCH0	Channel 0 Negative High Comparator Output
56	CTV0	Channel 0 Comparator Termination Voltage
57	CL0	Channel 0 Positive Low Comparator Output
58	NCL0	Channel 0 Negative Low Comparator Output
59	ENVHHP0	Channel 0 High-Voltage Mode Enable Input
60	DATA0	Channel 0 Positive Data Multiplexer Control Input
61	NDATA0	Channel 0 Negative Data Multiplexer Control Input
62	BV0	Channel 0 Bias Voltage Input
63	RCV0	Channel 0 Positive Receive Multiplexer Control Input
64	NRCV0	Channel 0 Negative Receive Multiplexer Control Input
65	LLEAKP0	Channel 0 Low-Leak Enable Input
66	HIZMEASP0	Channel 0 High-Impedance Enable Input For PMU Measure Output
_	EP	Exposed Pad. Internally connected to ground. Connect to a large open copper PCB plane or heatsink to maximize thermal performance. Not intended as an electrical connection point.

Detailed Description

The MAX9979 dual-channel pin electronics DCL/PMU integrates multiple pin-electronics functions into a single IC. Each channel includes a four-level pin driver, a window comparator, a differential comparator, dynamic clamps, a versatile PMU, an active load, and 14 independent 16-bit level-setting DACs. Additionally, each channel of the MAX9979 features programmable cable-droop compensation for the driver output and for the comparator input, adjustable driver output resistance, and driver slew-rate adjustment.

The MAX9979 driver features a wide -1.5V to +6.5V high-speed operating range, high-impedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. The MAX9979 also features a built-in super voltage (VHH) level up to 13V. The driver provides high-speed differential control inputs compatible with most high-speed logic families. The window comparators provide extremely low timing variation over changes in slew rate, pulse width, or overdrive voltage, and have 50Ω source outputs internally terminated to an applied voltage at CTV_. When high-impedance mode is selected, the programmable dynamic clamps provide damping of high-speed DUT waveforms. The 20mA active load facilitates fast contact testing when used in conjunction with the comparators, and functions as a pullup for open-drain/collector DUT outputs. The PMU offers five current ranges from $\pm 2\mu A$ to $\pm 50mA$ and can force and measure current or voltage. Placing the MAX9979 DUT_output into its very low-leakage state disables the DCL functions and the PMU force function.

This feature is convenient for making IDDQ measurements without the need for an output disconnect relay. Low-leakage control is independent for each channel. An SPI-compatible serial interface and external inputs configure the MAX9979.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Figure 1. Simplified Block Diagram. Only one of two channels is shown. The PMU is shown in high range. The single serial interface controls both channels.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

The integration of DCL and PMU functions in the MAX9979 requires defined states to manage the interaction of these resources. The PMU controls supersede those of the DCL, as described below and shown in Table 1. Important details to keep in mind are:

- Normal high-speed DCL operation is intended only when the PMU is in the FNMN state and the DCL is available, as indicated by Note B in Table 1.
- Forcing <u>LLEAKP</u> = 0 immediately places the DCL into low-leak mode, and the PMU into its high-impedance state independent of any other programmed control bit or external control inputs. Forcing <u>LLEAKP</u> = 1 is required to allow any other mode of operation.
- Forcing HIZFORCE_ = 1 enables the PMU and simultaneously forces the DCL into low-leak mode.
- Additional PMU settings such as the force and measure modes, current range, the measure output, comparators, and the clamp features are controlled as described later in this document.
- The MAX9979 provides calibration modes under which both the DCL and the PMU are simultaneously active. Forcing HIZFORCE = 0 ordinarily disables the PMU, however, when LLEAKS is not asserted, the FMODE and MMODE bits select these calibra-

tion modes. While in a calibration mode, the DCL states are still selected by the controls normally associated with those functions. When in a calibration mode, the PMU range A is not available. The PMU range defaults to range B if the serial-interface bit RS2_ = 1.

Driver

The driver uses a high-speed multiplexer to select one of three DAC voltages (DHV_, DLV_, and DTV_), or to select high-impedance mode. Multiplexer switching is controlled by high-speed differential inputs DATA_/NDATA_ and RCV_/NRCV_ and mode-control bit TMSEL_ (see Table 2). The multiplexer output is buffered to drive DUT_. A programmable slew-rate circuit controls the slew rate of the buffer input.

In high-impedance mode, the clamps and comparators remain connected to DUT_, the DUT_ bias current is less than $\pm 2\mu$ A, and the node continues to track high-speed signals (see Table 2). In low-leakage mode, the bias current at DUT_ is further reduced to less than ± 10 nA, yet signal tracking slows.

The nominal driver output resistance is 50Ω and features an adjustment range of $\pm 2.5\Omega$ through the serial interface in $360m\Omega$ increments. Contact the factory for different output resistance values.

MODES	DRIVER	COMPARATOR	LOAD	PMU	FMODE_	MMODE_	LLEAKP_	HIZFORCE_	NOTE
PMU	Low leak	Low leak	Low leak	FVMI	0	0	1	1	_
	Low leak	Low leak	Low leak	FVMV	0	1	1	1	_
	Low leak	Low leak	Low leak	FIMI	1	0	1	1	_
	Low leak	Low leak	Low leak	FIMV	1	1	1	1	_
DCL	Low leak	Available	Available	FVMI	0	0	1	0	А
	Available	Available	Available	FIMV	0	1	1	0	А
	Available	Available	Available	FNMN	1	0	1	0	В
	Available	Available	Available	FNMV	1	1	1	0	А
FNMx	Low leak	Low leak	Low leak	FNMN	Х	0	0	Х	_
	Low leak	Low leak	Low leak	FNMV	Х	1	0	Х	_

Table 1. MAX9979 Mode Selection

A = Calibration modes.

B = Normal high-speed DCL operation mode.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Table 2. Driver Control

SERIAL-INTERFACE BITS				DIGITAL	DRIVER OUTPUT			
LLEAKS_	ENVHHS_	TMSEL_	LLEAKP_	ENVHHP_	RCV_	DATA_		
0	X*	Х	1	1	0	0	Drive to DLV	
0	X*	Х	1	1	0	1	Drive to DHV	
0	0	0	1	1	1	Х	High-impedance receive**	
0	0	1	1	1	1	Х	Drive to DTV	
0	1	Х	1	Х	1	Х	Drive to VHH**	
0	0	Х	1	0	Х	Х	Drive to VHH**	
Х	Х	Х	0	Х	Х	Х	Low leak	
1	Х	Х	Х	Х	Х	Х	Low leak	

*Specified DHV, DLV transition times are not altered by the state of ENVHHS_.

**PMU and active load must be disabled to drive to VHH_ and High-impedance mode (HIZFORCE_ = 0, FMODE_ = 1, MMODE_ = 0, LDDIS_ = 1).

Table 3. Driver Slew Control

SC1_	SC0_	DRIVER SLEW RATE (%)
0	0	100*
0	1	75
1	0	50
1	1	25

*The power-on-reset and \overline{RST} default value.

Driver Slew Control

A slew-rate circuit controls the slew rate of the buffer input. Select one of four possible slew rates according to Table 3. The speed of the internal multiplexer sets the 100% driver slew rate (see the *Driver Large-Signal Response* graph in the *Typical Operating Characteristics* section). SC1 and SC0 are set to 0 at power-up or when RST is forced low.

VHH Function

VHH allows DUT_ to drive voltages up to 13V. The VHH_ DAC, which doubles as the PMU's CLAMPHI_ DAC, adjusts from 0 to +13V. Table 2 indicates the control settings required to set DUT_ to VHH_. Table 23 shows the transfer function for the VHH_ DAC.

Driver Cable-Droop Compensation

The driver incorporates active cable-droop compensation. At high frequencies, transmission-line effects from the DUT_ output, across the tester signal delivery path to the device under test, can degrade the output waveform fidelity, resulting in a highly degraded or unusable signal. The compensation circuit counters this degradation by adding a double time-constant decaying waveform to the nominal

Figure 2. Cable-Droop Compensation

output waveform (pre-emphasis). Figure 2 depicts a comparison between a typical driver and the MAX9979, and shows how droop compensation counters signal degradation. Control bits CDRP0, CDRP1, and CDRP2 vary the amplitude of the compensation signal. Table 4 shows the percent compensation as a function of control bit settings. The power-on-reset and $\overline{\text{RST}}$ values for CDRP0, CDRP1, and CDRP2 are 0. The specified default value is CDRP0 = 1 for *Electrical Characteristics* table data.

Table 4. Cable-Droop Compensation Control

SE	SERIAL-INTERFACE BITS		
CDRP2_	CDRP1_	CDRP0_	DROOP COMPENSATION (%)
0	0	0	0*
0	0	1	1.5**
0	1	0	3
0	1	1	4.5
1	0	0	6
1	0	1	7.5
1	1	0	9
1	1	1	10.5

*The power-on-reset and \overline{RST} default value.

**Specified default value for Electrical Characteristics table data.

Adjustable Driver Output Impedance (ARO)

The MAX9979's nominal 50Ω driver output resistance is adjustable by $\pm 2.5\Omega$ with a $360m\Omega$ resolution. The RO bits in the DCL calibration register set the resistance

value. Table 5 presents the output resistance control logic. The output resistance is set to R_O + 0.0 Ω (0b1000) at power-up or when \overline{RST} is forced low.

Table 5. Output Resistance Control

	SERIAL-INTERFACE BITS			
RO3_	RO2_	R01_	R00_	DRIVER OUTPUT RESISTANCE (Ω)
0	0	0	0	R _O - 2.88
0	0	0	1	R _O - 2.52
0	0	1	0	R _O -2.16
0	0	1	1	R _O - 1.80
0	1	0	0	R _O - 1.44
0	1	0	1	R _O - 1.08
0	1	1	0	R _O - 0.72
0	1	1	1	R _O - 0.36
1	0	0	0	R _O + 0*
1	0	0	1	R _O + 0.36
1	0	1	0	R _O + 0.72
1	0	1	1	R _O + 1.08
1	1	0	0	R _O + 1.44
1	1	0	1	R _O + 1.80
1	1	1	0	R _O + 2.16
1	1	1	1	R _O + 2.52

*Power-on-reset and RST default value.

Driver DATA Invert Mode

The DATA_/NDATA_ signals for a driver channel are internally inverted when the INVERT_ bit in the DCL register is asserted. The INVERT_ bit is set to 0 at power-up or when $\overrightarrow{\text{RST}}$ is forced low.

Driver Differential Data Mode

The MAX9979 allows the drivers to be configured for control of both channels from the channel 0 DATA0/ NDATA0 inputs. This feature allows the two channels to drive DUT nodes in parallel, providing a 25Ω driver at twice the nominal drive current. Enable this feature by setting the DIFFERENTIAL0 bit in the DCL register. The DIFFERENTIAL0 bit is set to 0 at power-up or when \overline{RST} is forced low.

Driver Invert + Differential Data Mode

Combining the differential and the invert modes allows the two channels to produce complementary outputs at DUT0 and DUT1 from a single digital data stream at DATA0/ NDATA0. The driver block diagram (Figure 3) shows the logic of the differential and inverted modes.

Bias Voltage Input (BV_)

Apply a voltage to BV_ that is \geq the V_{IH} voltage used for the DATA_ and RCV_ inputs (V_{IH} (DATA_, RCV_)) < V_{BV} < 3.5V, because there are ESD-protection diodes between BV_ and the high-speed inputs. Failure to do this turns on the protection diodes, degrading the DATA_ and RCV_ signals. Input bias current for BV_ is less than 1µA.

Driver Voltage Clamps

The voltage clamps (high and low) limit the voltage at DUT_ and suppress reflections when the channel is configured as a high-impedance receiver. The clamps behave as diodes connected to the outputs of high-current buffers (Figure 1). Internal circuitry compensates for the diode drop at 1mA clamp current. Set the clamp voltages using the level-setting DACs (CPHV_ and CPLV_). The clamps are enabled only when the driver is in the high-impedance mode. For transient suppression, set the clamp voltages to approximately the minimum and maximum expected DUT_ voltage range. The optimal clamp voltages are application-specific and must be empirically determined. Set the clamp voltages at least 0.7V outside the expected DUT_ voltage range when not using the clamps. Overvoltage protection then remains active without loading DUT_. Driver clamps are always and only enabled in driver high-impedance mode.

High-Speed Comparators

The MAX9979 provides two independent high-speed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV_ or CLV_ (Figure 4). Cable-droop compensation is present on both channels. Comparator outputs are a logical result of the input conditions.

This configuration switches a 16mA current source between the two outputs, and each output has an internal termination resistor connected to CTV_. These resistors are typically 50 Ω . Use alternate configurations to terminate different path impedance provided that the absolute maximum ratings are not exceeded. Note that the resistor value also sets the voltage swing. The output provides a nominal 400mV_{P-P} swing with a 50 Ω load termination, and a 50 Ω source termination. See the *Electrical Characteristics* section titled *High-Speed Comparators*, *Logic Outputs* for definition of the V_{OH} voltage.

Single-Ended Window Comparator

Set the DIFFERENTIAL1 bit = 0 in the channel 1 DCL register to enable the high-speed window comparator. DAC voltages $CHV_$ and $CLV_$ control the comparator thresholds. Table 6 shows the truth table for the comparators. Figure 4 shows the comparator block diagram.

Table 6. Single-Ended WindowComparator Truth Table

COND	СН_	CL_	
V _{DUT} < V _{CHV}	V _{DUT} < V _{CLV}	0	0
V _{DUT} < V _{CHV}	V _{DUT} > V _{CLV}	0	1
V _{DUT} > V _{CHV}	V _{DUT} < V _{CLV}	1	0
V _{DUT} > V _{CHV}	V _{DUT} > V _{CLV}	1	1

Figure 3. Driver Block Diagram

Figure 4. High-Speed Comparators Block Diagram

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Table 7. Differential Window Comparator Truth Table

CONE	CH0	CL0	
V _{DUT0} - V _{DUT1} < V _{CHV1} - V _{DGS}	V _{DUT0} - V _{DUT1} < V _{CLV1} - V _{DGS}	0	0
V _{DUT0} - V _{DUT1} < V _{CHV1} - V _{DGS}	V _{DUT0} - V _{DUT1} > V _{CLV1} - V _{DGS}	0	1
V _{DUT0} - V _{DUT1} > V _{CHV1} - V _{DGS}	V _{DUT0} - V _{DUT1} < V _{CLV1} - V _{DGS}	1	0
V _{DUT0} - V _{DUT1} > V _{CHV1} - V _{DGS}	V _{DUT0} - V _{DUT1} > V _{CLV1} - V _{DGS}	1	1

Differential Window Comparator

Set the DIFFERENTIAL1 bit = 1 in the channel 1 DCL register to enable the high-speed differential window comparator. CHV1 and CLV1 control the differential comparator thresholds. CHV0 and CLV0 are not used when differential comparison is active. The valid voltage range for CHV1 and CLV1 in differential comparison mode is \pm 1V. Setting levels outside \pm 1V does not damage the device, but performance is not guaranteed. Differential comparator outputs are multiplexed to the channel 0 comparator outputs. The channel 1 comparator outputs are both forced to a high state. Figure 4 shows the operation of the comparator. Table 7 shows the truth table for the differential comparator. Figure 4 shows the comparator block diagram.

Comparator Hysteresis

The DCL calibration register controls the high-speed comparator hysteresis. The HYST bits of that register

select one of eight values (0, 2mV, 4mV, 6mV, 8mV, 10mV, 12mV, or 15mV). Hysteresis control affects both single-ended and differential comparators. The HYST bits are set to 0b000 at power-up or when $\overline{\text{RST}}$ is forced low. Table 8 shows the HYST bit functions.

Table 8. Hysteresis Logic

SERIAI	-INTERFAC	COMPARATOR HYS-	
HYST1_	HYST1_	HYST0_	TERESIS (MV)
0	0	0	0
0	0	1	2
0	1	0	4
0	1	1	6
1	0	0	8
1	0	1	10
1	1	0	12
1	1	1	15

Figure 5. Active Load Block Diagram (One Channel Shown)

Comparator Cable-Droop Compensation

Control comparator cable-droop compensation using the same serial bits used for the driver droop compensation, CDRP_. Cable-droop compensation is active for both the single-ended and the differential comparators.

Active Load

The active load is a linearly programmable current source and sink, a commutation buffer, and a diode bridge (Figure 5). Level-setting DACs VLDH_ and VLDL_ set the sink and source currents from 0 to 20mA. Level-setting DAC VCOM_ sets the commutation buffer output voltage. The source and sink naming convention is referenced to the MAX9979, so current out of the MAX9979 constitutes source current and current into the MAX9979 constitutes sink current.

The programmed source current loads the device under test when V_{DUT} < V_{COM} . The programmed sink current loads the device under test when V_{DUT} > V_{COM} . The high-speed differential inputs (RCV_/NRCV_) and three bits of the control word (LLDIS_, LDCAL_, and TMSEL_) control the load. LLEAKP_ and LLEAK_ place the load into low-leakage mode. The low-leakage controls override other controls. Table 9 details load control logic.

Load Calibration Enable (LDCAL_)

LDCAL_ allows the load and driver to be simultaneously enabled for diagnostic purposes. LDDIS_ overrides LDCAL_.

Parametric Measurement Unit (PMU)

The MAX9979 PMU forces and measures voltages from -1.5V to 6.5V, and currents up to ±50mA. The lowest fullscale current range is ±2 μ A. Available PMU modes are force-voltage/measure voltage (FVMV), force-voltage/ measure current (FVMI), force-current/measure current (FIMI), force-current/measure voltage (FIMV), force-nothing/measure voltage (FNMV), and force-nothing/measure nothing (FNMN). Figure 6 presents a block diagram on the PMU.

PMU Current-Range Selection

Three bits from the control word (RS0, RS1, and RS2) control the full-scale current range for both force-current (FI) and measure-current (MI) modes. The PMU ranges are independent of the programmed PMU mode, except range A, which is not allowed in any calibration mode. In these modes range A defaults to range B (see Table 1). Table 10 presents the PMU current-range control logic.

RCV_	TMSEL_	LDDIS_	LDCAL_	LLEAKS_	LLEAKP_	LOAD STATE
Х	Х	Х	Х	1	Х	LOW LEAK
Х	Х	Х	Х	Х	0	LOW LEAK
0	Х	0	0	0	1	OFF
Х	Х	1	Х	0	1	OFF
1	1	0	0	0	1	OFF
1	0	0	0	0	1	ON
Х	Х	0	1	0	1	ON
1	0	1	Х	0	1	HIGH-IMPEDANCE MODE

Table 9. Load Control Logic

Table 10. PMU Current-Range Control

DIGITAL INPUT		SERIAL-INTERFACE BITS			
LLEAKP_	HIZFORCE_	RS2_	RS1_	RS0_	RANGE
Х	Х	0	0	0	E
Х	Х	0	0	1	D
Х	Х	0	1	0	С
Х	Х	0	1	1	В
Х	0	1	Х	Х	B*
0	1	1	Х	Х	B*
1	1	1	Х	Х	A

*Range A operation is not allowed for PMU high-impedance modes—PMU defaults to range B.

Figure 6. PMU Block Diagram (One Channel Shown)

PMU Comparators

Two comparators, configured as a window comparator, monitor the MEASV_ and MEASI_ signals (Figure 6). Level-setting DACs IVMAX_ and IVMIN_ set the high and low thresholds that determine the window (DAC IVMAX_ shares duties with VHH_). Both PMU window comparator outputs are open-drain and share a single serial disable bit (DISABLE_) that puts the outputs in a high-impedance, low-leakage state. MEAS_ includes the influence of VIOS, while the comparator outputs do not. Table 11 presents the PMU comparator output logic.

PMU Measure Output (MEAS_)

The MEAS_ output presents a voltage proportional to the measured voltage or current. Force logic input HIZMEASP_ or bit HIZMEASS_ low to place MEAS_ in a low-leakage, high-impedance state.

VIOS Offset Level for PMU Measure Voltage MEAS_ Output

In MV mode, use the VIOS level-setting DAC to offset the MEAS_ output voltage. The valid range of VIOS is 0 to 1.5V, but the VIOS DAC is programmable from -1.25V to +3.75V. The single VIOS DAC is shared by both channels. VIOS allows level shifting the MEAS_ output, useful when MEAS_ is read by a unipolar ADC. The nominal 0x0000 to 0xFFFF code range for VIOS equates to -1.25V to +3.75V. The power-on-reset and RST state of VIOS is 0x4000, or 0V, the level for normal operation. The MEAS_ output tracks DGS. The VIOS DAC range is programmable outside the valid operational range of the VIOS signal, but doing so will not harm the device. Table 23 presents the VIOS DAC transfer function.

IIOS Reference Level for PMU Measure Current MEAS_ Output

In MI mode, adjust the MEAS_ output around the I_{DUT} = 0 center reference using the IIOS level-setting DAC. IIOS is programmable from 0 to 5V, but levels outside of the 2V to 4V range are invalid. The single IIOS DAC is shared by both channels. IIOS allows level shifting the \pm 4V MI output range to fully above ground at the MEAS_ output, useful when MEAS_ is read by a unipolar ADC. The nominal 0x0000 to 0xFFFF code range for IIOS equates to 0 to 5V. The power-on-reset and RST state of IIOS is 0x4000, or 1.25V. For normal operation, the level of IIOS is 2.5V for a -1.5V to +6.5V MI MEAS_ output. The IIOS DAC range is programmable outside the valid operational range of the IIOS signal, but doing so will not harm the device. Table 23 presents the IIOS DAC transfer function.

The MI MEAS_ output is a buffered version of an internal node that is used to close the force-current loop. The sourcing range of forced current is limited for IIOS levels above 3.5V by the V_{IN} upper limit of approximately 7.5V.

PMU Sense

Control bit PMUSENSE_ determines which of two inputs reaches the PMU sense amplifier (Figure 6). One input is from DUT_ through an internal $10k\Omega$ resistor, the other input is from external input SENSE_. Not shown in Figure 6 is a third input to the sense amplifier (GND), which is used in VHH and FNMN modes to isolate and protect the amplifier from potential overvoltage and glitches. GND is connected automatically based on mode setting and no discrete control is required. Table 12 presents the PMU sense control logic.

	CONDITION	COMPARATOR OUTPUTS		
DISABLE_ BIT	CONDITION	DUTHI_	DUTLO_	
0	Х	HIGH IMPEDANCE	HIGH IMPEDANCE	
1	V _{MEASURE} > V _{IVMAX} AND V _{IVMIN}	0	1	
1	V _{IVMAX} > V _{MEASURE} > V _{IVMIN}	1	1	
1	V _{IVMAX} AND V _{IVMIN} > V _{MEASURE}	1	0	
1	V _{IVMIN} > V _{MEASURE} > V _{IVMAX} *	0	0	

Table 11. PMU Comparator Output Logic

*Normal operation is with $V_{IVMAX} > V_{IVMIN}$. This condition has $V_{IVMIN} > V_{IVMAX}$. This does not cause any problems with the operation of the comparators.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

DIGITAL INPUT	SERIAL-INTERFACE BITS			PMU MODE	SENSE PATH	
LLEAKP_	HIZFORCE_	FMODE_	MMODE_	PMUSENSE_	PINO MODE	SENSE PAIR
1	1	Х	X	0	FyMy*	Internal
1	1	Х	Х	1	FyMy*	External
1	0	0	Х	0	FVMy* (calibration)	Internal
1	0	0	Х	1	FVMy* (calibration)	External
1	0	1	0	X	FNMN	GND
1	0	1	1	0	FNMV (calibration)	Internal
1	0	1	1	1	FNMV (calibration)	External
0	Х	Х	0	X	FNMN	GND
0	Х	Х	1	0	FNMV (calibration)	Internal
0	Х	Х	1	1	FNMV (calibration)	External

Table 12. PMU Sense Control Logic

*y = V or I.

PMU Analog Signal Polarities

In FV mode, DUT_ voltage is proportional to level-setting DAC voltage $V_{IN}_$ In FI mode, the current flowing out of DUT_ is equal to:

$$\frac{(V_{IN} - V_{IIOS})}{4 \times R_{RANGE}}$$

Positive current is defined as flowing out of the PMU. In FN mode, the PMU output is high impedance. Table 13 presents the range resistor values. Table 23 presents the DAC transfer functions.

PMU Voltage Clamps

Voltage clamps are available on the PMU output only in the FI mode. Program the clamps with level-setting DACs CLAMPLO_ and CLAMPHI_. The PMU voltage clamps handle the full ±50mA and are triggered by the voltage at DUT_ independent of the voltage at SENSE_. The voltage clamps override the PMU only, and do not limit the voltage of external sources. If an external source drives

Table 13. Range Resistor Values

RANGE	RESISTOR VALUE (Ω)
A	20
В	500
С	5K
D	50K
E	500K

DUT_ beyond a voltage clamp level, the PMU will current limit safely. When a PMU voltage clamp is active and at its limit, the MV and MI functions remain valid. Do not let external voltage levels at DUT_ exceed the absolute maximum rating limits.

PMU Current Clamps

Current clamps are available on the PMU output only in the FV mode. Program the clamps with level-setting DACs CLAMPLO_ and CLAMPHI_. The PMU current clamps handle the full current range (±50mA for range A, ±2mA for range B, etc.). If the clamp currents are exceeded, the PMU enters a constant-voltage mode. The current clamp circuits override the PMU only, and do not limit external sources. When a PMU current clamp is active, the MV and MI functions are still valid.

PMU Clamp Enable

The CLENABLE_ bit in the PMU register enable the voltage and current clamps. Table 14 presents the clamp enable control logic.

Table 14. Clamp Enable Control Logic

CLENABLE_ BIT	MODE
1	CLAMPS ENABLED
0	CLAMPS DISABLED

PMU Voltage/Current-Limit Flags

The PMU features two comparators, arranged as a window comparator, to flag current or voltage levels, allowing fast go/no-go testing. The comparators monitor the load current or voltage, and compare it to level-setting DACs IVMAX and IVMIN. The MMODE_bit selects whether the window comparator monitors MEASV_ or MEASI_ (Figure 6). If MMODE_ selects MEASV_ then the PMUSENSE_ bit selects either the SENSE_ input or DUT_ (Figure 6).

Independent Control of PMU Feedback Switch and Measure Switch

Two single-pole/double-throw (SPDT) switches determine the mode of operation of the PMU. One switch determines whether the sensed DUT_current or DUT_voltage is fed back to the input, and thus determines which of these parameters is forced. The other switch determines whether the sensed DUT_current or DUT_voltage is presented at MEAS_. Independent control of these switches and the force high-impedance state allow for flexible modes of operation beyond the traditional force-voltage/measurecurrent (FVMI) and force-current/measure-voltage (FIMV) modes. The modes supported are:

- FVMI: Force-voltage/measure-current mode
- FIMV: Force-current/measure-voltage mode
- FVMV: Force-voltage/measure-voltage mode
- FIMI: Force-current/measure-current mode
- FNMV: Force-nothing/measure-voltage mode
- FNMN: Force-nothing/measure-nothing mode

PMU Measure Output High-Impedance Control

The MEAS_ output features a low-leakage, high-impedance state. To activate this state, either place the HIZMEASS_ bit low or force the HIZMEASP_ logic input low. The two controls are logically ANDed together (Figure 6). The HIZMEASP_ input allows multiplexing between PMU measure outputs without the use of the serial interface. At power-up, HIZMEASS_ defaults low, placing MEAS_ in a high-impedance state. Table 15 presents the high-impedance control logic for the MEAS_ output.

PMU Low-Leakage Mode

The PMU output features a low-leakage, high-impedance state. To activate this state, either place the HIZFORCE_ bit low or force the LLEAKP_ logic input low. The two controls are logically ANDed together (Figure 6). At power-up, HIZFORCE_ defaults low, placing the PMU in a low-leakage state. Table 1 presents the low-leakage logic for the PMU output.

Table 15. Measure Output High-ImpedanceControl Logic

HIZMEASS_ BIT	HIZMEASP_ INPUT	MEAS_STATE
1	1	Measure output enabled
1	0	High impedance
0	1	High impedance
0	0	High impedance

PMU DUT Ground Sense (DGS)

All the DAC and MEAS_ outputs track with respect to the DUT ground sense input (DGS). Connect DGS to the ground of the device under test.

PMU DUT_ Node Force and Sense Switches

The MAX9979 features additional PMU force (PMU-F) and PMU sense (PMU-S) connections, through serial-controlled switches, that are shared between channels (Figure 6) and can be used to connect an external PMU. The force switch is maximum 100Ω , and the sense switch is maximum $2.5k\Omega$.

PMU DUT_ Voltage Swing vs. DUT_ Current and Power-Supply Voltages

Two issues limit the DUT_ voltage that the PMU delivers. The first issue is the headroom required by the amplifiers and other on-chip circuitry at zero output current. The second issue is the headroom required with sense resistor and additional circuit voltage drops at full-scale current. When the PMU is sourcing or sinking DUT_ current, the voltage range is reduced linearly. This compliance curve applies to both FV and FI modes and is independent of V_{DGS}. Because the forced DUT_ voltage in FV mode is = DGS + V_{IN}, V_{DUT}_ is further limited by the V_{DGS} and the -2.5V to +7.5V V_{IN} range. Force output capabilities of the PMU are presented in Figure 7.

These limitations are based on the guaranteed performance of the MAX9979. Operating the DUT node outside these limits will not harm the MAX9979, as long as the absolute maximum rating limits are observed. With the above considerations, it is possible to extend the range of the DUT swing beyond the limits of Figure 7. However, some specifications, such as linearity, will begin to degrade. Performance while operating outside the limits shown in Figure 7 is not guaranteed.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Figure 7. Output-Voltage Range

Serial Interface

An SPI-compatible serial interface and the logic-controlled inputs shown in Table 1 control the MAX9979. The serial interface, detailed in Figure 8, operates with clock speeds up to 50MHz and includes the signals \overline{CS} , SCLK, DIN, \overline{RST} , \overline{LOAD} , and DOUT. Serial-interface timing is shown in Figure 9 and timing specifications are detailed in the *Electrical Characteristics* section.

Loading Data into the MAX9979

Load data into the 24-bit shift register from DIN on the rising edge of SCLK, while \overline{CS} is low (Figure 8). The MAX9979 is updated when the control and level-setting data are latched into the control and level-setting registers. The control and level-setting registers are separated from the shift register by the input and channel-select registers. Two methods allow data to transfer from the shift register to the control and level-setting registers, depending on the state of external digital input \overline{LOAD} .

Holding $\overline{\text{LOAD}}$ high during the rising edge of $\overline{\text{CS}}$ allows the shift register data to transfer only into the input and channel-select registers. Force $\overline{\text{LOAD}}$ low to transfer the data into the control and level-setting registers. Changes update on the falling edge of $\overline{\text{LOAD}}$, which allows preloading of data and facilitates synchronizing updates across multiple devices.

Figure 8. Serial-Interface Block Diagram

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Figure 9. Serial-Interface Timing

Holding $\overline{\text{LOAD}}$ low during the rising edge of $\overline{\text{CS}}$ forces the input and channel-select registers to become transparent and all data transfers through these registers directly to the control and level-setting registers. Changes update on the rising edge of $\overline{\text{CS}}$. Figures 10 and 11 show how $\overline{\text{LOAD}}$ and $\overline{\text{CS}}$ function, and also the data configuration of SCLK, DIN, and DOUT.

The calibration registers change on the rising edge of \overline{CS} , regardless of the state of \overline{LOAD} .

DOUT

DOUT is a buffered version of the last bit in the serialinterface shift register. The complete contents of the shift register can be read at DOUT during the next write cycle. To shift data out without modifying any registers, perform a write with address bits A4 and A5 set to 0. Use DOUT to daisy chain multiple devices, and/or to verify that data were properly shifted in during the previous communication.

Controlling the MAX9979

Control and level-setting registers are selected to receive data based on the channel and mode-select bits (A0–A7). Table 16 presents the control register bits and their functions. Level-setting DAC data and control-register data are contained in the 16 data bits D0–D16. Tables 15, 16, and 17 detail the bit functions. Clock in bit A7 first, and bit D0 last, as shown in Figure 8.

Bit A6 allows access to the DAC calibration registers. Use the calibration registers to adjust the gain and offset of each DAC. Set bit A6 to write to the calibration registers (Table 18). See the *Level-Setting DACs* section for more information.

Figure 10. Using TOAD to Update the Level-Setting and Control Registers

Figure 11. Using CS to Update the Level-Setting and Control Registers (LOAD Held Low)

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Table 16. MAX9979 Control and Calibration Register Bits

REGISTER	FUNCTION
CDRP_	DRIVER AND COMPARATOR CABLE-DROOP COMPENSATION
CLENABLE_	PMU CLAMP ENABLE
DIFFERENTIAL0	SELECT DATA1/NDATA1 AS DATA CONTROL FOR BOTH CHANNELS 1 AND 2 (FIGURE 3)
DIFFERENTIAL1	ENABLE DIFFERENTIAL COMPARATOR OUTPUTS (FIGURE 4)
DISABLE_	PMU COMPARATOR OUTPUT DISABLE
ENVHHS_	VHH_ MODE ENABLE
FMODE_	PMU FORCE-MODE CONTROL
GCAL_	DAC GAIN CALIBRATION
HIZFORCE_	PMU DUT_ HIGH-IMPEDANCE CONTROL
HIZMEASS_	PMU MEASURE OUTPUT HIGH-IMPEDANCE CONTROL
HYST_	HIGH-SPEED COMPARATOR HYSTERESIS SELECT
HYSTEN_	PMU COMPARATOR HYSTERESIS ENABLE
INVERT_	DATA_/NDATA_ POLARITY CONTROL
LDCAL_	LOAD CALIBRATION ENABLE
LDDIS_	LOAD DISABLE
LLEAKS_	DCL LOW-LEAK ENABLE
MMODE_	PMU MEASURE-MODE CONTROL
OCAL_	DAC OFFSET CALIBRATION
PMU-F_	FORCE SWITCH ENABLE (FIGURE 6)
PMU-S_	SENSE SWITCH ENABLE (FIGURE 6)
PMUSENSE_	PMU MEASV INPUT CONTROL
RO_	DRIVER OUTPUT RESISTANCE SELECT
RS_	PMU CURRENT RANGE SELECT
SC_	DRIVER SLEW-RATE CONTROL
TMSEL_	DRIVER TERMINATE SELECT CONTROL
TMUX_	FACTORY USE ONLY. PROGRAM TO 0.

Table 17. Serial-Input Data Overview

BIT	FUNCTION
A7	NOT USED. WRITE 0 OR 1
A6	CALIBRATION REGISTER WRITE ENABLE
A5	CHANNEL 1 WRITE ENABLE
A4	CHANNEL 0 WRITE ENABLE
A3–A0	REGISTER ADDRESS (SEE TABLE 18)
D15–D0	REGISTER DATA (SEE TABLE 19)

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Table 18. Register Address Bits

	BI	TS		REGISTER		
A3	A2	A1	A0	A6 = 0	A6 = 1	
0	0	0	0	DCL CONTROL	DCL CALIBRATION	
0	0	0	1	DHV LEVEL	DHV CALIBRATION	
0	0	1	0	DLV LEVEL	DLV CALIBRATION	
0	0	1	1	DTV LEVEL	DTV CALIBRATION	
0	1	0	0	CHV LEVEL/PMU IVMAX	CHV CALIBRATION	
0	1	0	1	CLV LEVEL/PMU IVMIN	CLV CALIBRATION	
0	1	1	0	CPHV LEVEL	CPHV CALIBRATION	
0	1	1	1	CPLV LEVEL	CPLV CALIBRATION	
1	0	0	0	PMU CONTROL	—	
1	0	0	1	VIN LEVEL	VIN CALIBRATION	
1	0	1	0	VCOM LEVEL	VCOM CALIBRATION	
1	0	1	1	VLDH LEVEL	VLDH CALIBRATION	
1	1	0	0	VLDL LEVEL	VLDL CALIBRATION	
1	1	0	1	VIOS/IIOS* LEVEL	VIOS/IIOS* CALIBRATION	
1	1	1	0	CLAMPHI/VHH LEVEL	CLAMPHI/VHH CALIBRATION	
1	1	1	1	CLAMPLO LEVEL	CLAMPLO CALIBRATION	

*Channel 0 register programs the VIOS level; channel 1 register programs the IIOS level. Select channels with bits A4 and A5.

Table 19. Data Bit Assignments*

			FUNCTIO	ON			
BIT	DCL CONTROL REGISTER**	DCLCALIBRATION REGISTER**	PMU CONTROL	LEVEL-SETTER REGISTER	DAC GAIN AND OFFSET CALI- BRATION REGISTERS		
	REGISTER	REGISTER	REGISTER**	REGISTER	VIN	ALL OTHERS	
D0	SC0	RO0	FMODE_	BIT 0 (LSB)	OCAL0	OCAL0	
D1	SC1	RO1	MMODE_	BIT 1	OCAL1	OCAL1	
D2	LLEAKS	RO2	RS0_	BIT 2	OCAL2	OCAL2	
D3	TMSEL	RO3	RS1_	BIT 3	OCAL3	OCAL3	
D4	LDDIS	HYST0	RS2_	BIT 4	OCAL4	OCAL4	
D5	INVERT	HYST1	CLENABLE_	BIT 5	OCAL5	OCAL5	
D6	DIFFERENTIAL	HYST2	HIZFORCE_	BIT 6	OCAL6	OCAL6	
D7	LDCAL	CDRP0	HIZMEASS_	BIT 7	OCAL7	OCAL7	
D8	ENVHHS	CDRP1	DISABLE_	BIT 8	GCAL0	GCAL0	
D9	TMUX0 = 0	CDRP2	PMUSENSE_	BIT 9	GCAL1	GCAL1	
D10	TMUX1 = 0	—	HYSTEN_	BIT 10	GCAL2	GCAL2	

*The data bits enter the shift register in the order, MSB to LSB.

**The DCL control, DCL calibration, and PMU control registers default to 0x0004, 0x0008, and 0x0003 respectively at power-up.

Table 19. Data Bit Assignments* (continued)

		FUNCTION							
BIT						LEVEL-SETTER REGISTER	-	ND OFFSET CALI- N REGISTERS	
	REGISTER	REGISTER	REGISTER	REGISTER	VIN	ALL OTHERS			
D11	TMUX2 = 0	—	PMU-F	BIT 11	GCAL3	GCAL3			
D12	TMUX3 = 0	—	PMU-S	BIT 12	GCAL4	GCAL4			
D13	—	—	—	BIT 13	GCAL5	GCAL5			
D14		_	_	BIT 14	GCAL6	_			
D15	_	—	_	BIT 15 (MSB)	_	—			

*The data bits enter the shift register in the order, MSB to LSB.

**The DCL control, DCL calibration, and PMU control registers default to 0x0004, 0x0008, and 0x0003 respectively at power-up.

Level-Setting DACs

The MAX9979 includes 28 level-setting DACs that provide the DC voltage levels for the various control and monitor circuits of the 2-channel MAX9979. Some of the DACs are shared between the MAX9979 channels, and some perform dual functions within a channel (Figure 12). Important details about the operation of shared DACs are:

- VIOS share a common DAC level for both channels.
 VIOS DAC simultaneously updates the VIOS1 and VIOS2 levels.
- IIOS share a common DAC level for both channels. The IIOS DAC simultaneously updates the IIOS1 and IIOS2 levels.
- CLAMPHI_ and VHH_ share a common DAC level. The CLAMPHI_/VHH_ DAC simultaneously updates the CLAMPHI_ and VHH_ levels. Note that the VHH_ output is 0 to +13V. If CLAMPHI_ is set to a negative value and the VHH_ mode is selected, the VHH_ output limits close to 0V.
- CHV_ and IVMAX_ share a common DAC level. The CHV_/IVMAX_ DAC simultaneously updates the CHV_ and IVMAX_ levels.
- CLV_ and IVMIN_ share a common DAC level. The CLV_/IVMIN_ DAC simultaneously updates the CLV_ and IVMIN_ levels.

A 16-bit code that varies between 0x0000 and 0xFFFF sets all DAC levels. Table 20 presents a list of the DACs and their default values.

Figure 12. Arrangement of Shared DACs

Calibrating DAC Gain and Offset

DAC calibration registers adjust the gain and offset of each DAC. Each DAC has at least one calibration register. All DAC calibration registers are programmed with a 14-bit code, except VIN_, which uses a 15-bit code (Table 19). The codes are divided into two fields, one field each for gain (GCAL_) and offset (OCAL_). VIN_ has a 7- bit field for gain and an 8-bit field for offset. All other DACs have a 6-bit field for gain and an 8-bit field for offset.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

The VCH_, VCL_, and VIN_DACs have duplicate calibration registers that are selected and addressed as a function of the selected DCL/PMU modes. The VCH_ and VCL_ registers each have three separate calibration registers that are used by the window comparator, the differential comparator, and the PMU comparator, respectively. The VIN_ register features six duplicate calibration registers that are selected as a function of the PMU force mode. These registers are individually addressed by first selecting the appropriate mode, then performing the register write. After the calibration registers are programmed, the appropriate register is automatically switched in as a function of the operating mode.

Table 20 presents a list of the DAC registers and their default values. Calibration registers are programmed to default values only during a power-on reset. Asserting $\overrightarrow{\text{RST}}$ does not force the calibration registers to their default values. Table 21 summarizes the DAC register addresses. Figure 13 shows how the calibration registers affect the DAC outputs.

DAC	DESCRIPTION	LEVEL-SETTING REGISTER POWER-UP AND RST VALUE	CALIBRATIONREGISTER POWER-UP VALUE*
DHV_	Driver high	0x4000	0x2080
DLV_	Driver low	0x4000	0x2080
DTV_	Driver term	0x4000	0x2080
CHV_/IVMAX_	High comparator/PMU high comparator	0x4000	0x2080
CLV_/IVMIN_	Low comparator/PMU low comparator	0x4000	0x2080
CPHV_	High high-impedance clamp	0x4000	0x2080
CPLV_	Low high-impedance clamp	0x4000	0x2080
VIN_	PMU force value	0x4000	0x4080
VCOM_	Load commutation voltage	0x4000	0x2080
VLDH_	Load source current	0x4000	0x2080
VLDL_	Load sink current	0x4000	0x2080
VIOS	PMU measure voltage offset	0x4000	0x2080
lios	PMU force/measure current offset	0x4000	0x2080
CLAMPHI_/VHH_	PMU high clamp/driver super voltage	0x4000	0x2080
CLAMPLO_	PMU low clamp	0x4000	0x2080

Table 20. DAC Power-Up and Reset Default Values

*Calibration registers not affected by \overline{RST} .

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

DAC	DESCRIPTION	LEVEL-SETTING REGISTER ADDRESS			CALIBRATION REGISTER ADDRESS			NOTES
		CH 0	CH 1	BOTH	CH 0	CH 1	BOTH	
DHV_	Driver high	0x11	0x21	0x31	0x51	0x61	0x71	_
DLV_	Driver low	0x12	0x22	0x32	0x52	0x62	0x72	—
DTV_	Driver term	0x13	0x23	0x33	0x53	0x63	0x73	—
CHV_/IVMAX_	High comparator/PMU high comparator	0x14	0x24	0x34	0x54	0x64	0x74	1, 3
CLV_/IVMIN_	Low comparator/PMU low comparator	0x15	0x25	0x35	0x55	0x65	0x75	2, 3
CPHV_	High high-impedance clamp	0x16	0x26	0x36	0x56	0x66	0x76	_
CPLV_	Low high-impedance clamp	0x17	0x27	0x37	0x57	0x67	0x77	_
VIN_	PMU force value	0x19	0x29	0x39	0x59	0x69	0x79	3
VCOM_	Load commutation voltage	0x1A	0x2A	0x3A	0x5A	0x6A	0x7A	_
VLDH_	Load source current	0x1B	0x2B	0x3B	0x5B	0x6B	0x7B	—
VLDL_	Load sink current	0x1C	0x2C	0x3C	0x5C	0x6C	0x7C	_
VIOS	PMU measure voltage offset	0x1D	_	—	0x5D	-	_	4
lios	PMU force/measure current offset	_	0x2D	_	—	0x6D	_	5
CLAMPHI_/VHH_	PMU high clamp/driver super voltage	0x1E	0x2E	0x3E	0x5E	0x6E	0x7E	3, 6
CLAMPLO_	PMU low clamp	0x1F	0x2F	0x3F	0x5F	0x6F	0x7F	_

Table 21. DAC Level-Setting and Calibration Register Addresses

Note 1: A common DAC is used for both the CHV_ and IVMAX_ levels.

Note 2: A common DAC is used for both the CLV_and IVMIN_levels.

Note 3: The CHV_ and CLV_ levels each have a pair of calibration registers. One is active when using the window comparator; the other is active when using the differential comparator. The VIN_ level has six calibration registers corresponding to the force voltage and the five ranges of force current modes of the PMU. The CLAMPHI_, VHH_, IVMAX_, and IVMIN_ levels each have their own dedicated calibration register. Addressing any of these calibration registers requires device mode settings (Table 22) as well as the register's address.

- Note 4: The VIOS level is common to both channels. A channel 0 DAC is used to generate VIOS.
- Note 5: The IIOS level is common to both channels. A channel 1 DAC is used to generate IIOS.
- Note 6: A common DAC is used for both the CLAMPHI_ and VHH_ levels.

Figure 13. DAC Calibration Registers

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

An example calibration sequence follows:

1) Power up the MAX9979. This sets the levelsetting DACs to their default 0V values, and the gain and offset calibration registers to their default midscale values (Table 20).

2) Gain calibration (gain must be calibrated before calibrating offset).

 a. Program a level-setting DAC to its minimum value and measure the output voltage (V_{OUT_MIN}). Then, reprogram the DAC to its maximum value and again measure the output voltage (V_{OUT_ MAX}). Calculate the gain using the following equation:

$$GAIN = \frac{V_{OUT}MAX - V_{OUT}MIN}{V_{SET}MAX - V_{SET}MIN}$$

where $V_{\mbox{SET}_MAX}$ and $V_{\mbox{SET}_MIN}$ are the desired gain calibration points.

- b. Set the DACs gain calibration register until the gain is as close to 1 as possible. This calibrates the gain for the DAC. Record the gain calibration register value for later use.
- 3) Offset calibration (must be done after the gain

calibration).

- a. Set the level of the DAC to the desired offset calibration point (e.g., midscale).
- b. Measure V_{OUT} and compare it to the expected output.
- c. Adjust the offset calibration register until V_{OUT}_ is as close as possible to the expected voltage. Record the value of the offset calibration register for later use.
- 4) Repeat the above procedure for all DACs that need calibration, recording each of the gain and offset calibration register settings for later use.

The prior procedure only needs to be done once. Each time the power is cycled, simply reprogram the gain and offset registers using the recorded values.

Table 22 presents the mode settings required to access the calibration registers of the shared DACs. In some cases there is more than one way to access the register.

CALIBRATIO	N REGISTER	SERIAL-INTERFACE BITS							
DAG	MODE			EMODE	MMODE		RS_BIT		
DAC	MODE	HIZFORCE_	DIFFERENTIAL1	FMODE_	MMODE_	2	1	0	
	Window	0	0	Х	Х	Х	X	Х	
CLV_, CHV_	Differential	0	1	Х	Х	Х	Х	Х	
IVMAX_, IVMIN_	—	1	Х	Х	Х	Х	Х	Х	
CLAMPHI_	—	1	Х	Х	Х	Х	Х	Х	
VHH_	—	0	X	Х	Х	Х	X	Х	
	FV*	0	Х	Х	0	V	x	X	
		1	X	0	Х	Х		~	
	FI Range A	1	Х	1	Х	1	Х	Х	
	FI Range B*	0	Х	Х	1	1	Х	Х	
		0	Х	Х	1	0	1	4	
) (INI		1	Х	1	Х	0		1	
VIN_		0	X	Х	1	0	4	0	
	FI Range C*	1	Х	1	Х	0	1	0	
		0	Х	Х	1	0		4	
	FI Range D*	1	Х	1	Х	0	0	1	
		0	Х	Х	1	0	0	0	
	FI Range E*	1	Х	1	Х	0	0	0	

Table 22. Mode-Control Settings to Access Calibration Registers of Shared DACs

*Any of these conditions allow access to the calibration register.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

DAC Output Level Transfer Functions

Each of the MAX9979 analog DAC levels is set with a transfer function that includes the 16-bit DAC code setting, the gain code setting, and the offset code setting. The V_{DAC} and V_{VINDAC} expressions below present the basic DAC transfer functions. Each DAC has a voltage output range of -2.5V to +7.5V (typ). Thirteen of these DACs are identical and generate a potential according to the following equation:

$$V_{DAC} = \begin{pmatrix} \left(\frac{DAC_{CODE}}{16384} - 1\right) \times \left(V_{REF} - V_{DGS}\right) + \\ \left(OFFSET_{CODE} \times 0.001\right) - 0.128 \end{pmatrix} \\ \times \left(0.98 + 0.02 \times \left(\frac{GAIN_{CODE}}{32}\right)\right) + V_{DGS}$$

Table 23. DAC Transfer Functions

A separate DAC (VIN_) is used for the PMU force value. This DAC has a finer gain adjustment resolution and follows the equation:

$$V_{\text{VINDAC}} = \begin{pmatrix} \left(\frac{\text{DAC}_{\text{CODE}}}{16384} - 1\right) \times \left(\text{V}_{\text{REF}} - \text{V}_{\text{DGS}}\right) \\ + \left(\text{OFFSET}_{\text{CODE}} \times 0.001\right) - 0.128 \end{pmatrix} \\ \times \left(0.98 + 0.02 \times \left(\frac{\text{GAIN}_{\text{CODE}}}{64}\right)\right) + \text{V}_{\text{DGS}}$$

For all DACs, the offset code is an integer value between 0 and 255. The VIN_DAC gain code is an integer value between 0 and 127, and for all other DACs the gain code is an integer value between 0 and 63. Offset and gain codes are based on the calibration register settings.

LEVEL	LEVEL TRANSFER FUNCTION
DHV_	V _{DAC} x DHV_gain + DHV_offset
DLV_	V _{DAC} x DLV_gain + DLV_offset
DTV_	V _{DAC} x DTV_gain + DTV_offset
CHV_	V _{DAC} x CHV_gain + CHV_offset
IVMAX_	V _{DAC} x IVMAX_gain + IVMAX_offset
CLV_	VDAC x CLV_gain + CLV_offset
IVMIN_	V _{DAC} x IVMIN_gain + IVMIN_offset
CPHV_	V _{DAC} x CPHV_gain + CPHV_offset
CPLV_	V _{DAC} x CPLV_gain + CPLV_offset
VIN_ (FVMI)	V _{VINDAC} x PMU_FV_gain + PMU_FV_offset
VIN_ (FIMV 50mA)	(V _{VINDAC} - V _{IIOS}) x (50mA/4V) x PMU_FI_ gain + PMU_FI_ offset
VIN_ (FIMV 2mA)	(V _{VINDAC} - V _{IIOS}) x (2mA/4V) x PMU_FI_ gain + PMU_FI_ offset
VIN_ (FIMV 200_A)	(V _{VINDAC} - V _{IIOS}) x (200_A/4V) x PMU_FI_ gain + PMU_FI_ offset
VIN_ (FIMV 20_A)	(V _{VINDAC} - V _{IIOS}) x (20_A/4V) x PMU_FI_ gain + PMU_FI_ offset
VIN_ (FIMV 2_A)	(V _{VINDAC} - V _{IIOS}) x (2_A/4V) x PMU_FI_gain + PMU_FI offset
VCOM_	V _{DAC} x VCOM_ gain + VCOM_ offset
VLDH_	(V _{DAC} - DGS) x (20mA/6V) x VLDH_ gain + VLDH_ offset
VLDL_	(V _{DAC} - DGS) x (20mA/6V) x VLDL_ gain + VLDL_ offset
VIOS	((V _{DAC} + DGS)/2) x VIOS gain + VIOS offset
lios	((V _{DAC} + REF)/2) x IIOS gain + IIOS offset
VHH_	(V _{DAC} - DGS) x 2 x VHH_gain + VHH_offset + DGS
CLAMPHI_ (Voltage)	V _{DAC} x CLAMPHI_gain + CLAMPHI_offset
CLAMPHI_ (Current)	(V _{DAC} - V _{IIOS}) x FSR/2V x CLAMPHI_gain + CLAMPHI_offset
CLAMPLO_ (Voltage)	V _{DAC} x CLAMPLO_ gain + CLAMPLO_ offset
CLAMPLO_(Current)	(V _{DAC} - V _{IIOS}) x FSR/2V x CLAMP_LO_ gain + CLAMPLO_ offset

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

- Values for PMU_FI_ gain and PMU_FI_ offset are different for each PMU current range.
- VLDH_ and VLDL_ levels less than zero are truncated.
- Full-scale range is dependent upon the PMU current range. Values are 100mA, 4mA, 400µA, 40µA, and 4µA for ranges A–E, respectively.
- Values for CLAMPHI_ gain, CLAMPLO_ gain, CLAMPHI_ offset, and CLAMPLO_ offset vary with PMU force mode and current range.

The V_{DAC} voltages are then utilized for the various signal paths within the MAX9979 (i.e., driver level DHV_). Each of these signal paths have inherent gain and offset errors, denoted as _gain and _offset terms in the Level Transfer Function column in Table 23. These error terms are presented to convey the non-ideal gain and offset of the signal paths—they do not have a specified value. The GAIN_{CODE} and OFFSET_{CODE} features of each DAC are designed to correct for these errors to make the level transfer function expressions, and therefore, the final signal path outputs (e.g., DHV_) more ideal.

Applications Information

Device Power-Up State

Upon power-up, the DCL enters low-leak mode and the PMU enters high-impedance mode. The DCL control, DCL calibration, and PMU control registers default to 0x0004, 0x0008, and 0x0003, respectively. For initial power-up values for the level-setting registers, see Table 20. Power supplies may be powered on in any sequence.

Power-Supply Considerations

Bypass each supply input to GND and REF to DGS with 0.1 μ F capacitors (Figure 13). Additionally, use bulk bypassing of at least 10 μ F where the power-supply connections meet the circuit board.

Exposed Pad

The exposed pad is internally connected to ground. Connect to a open copper PCB ground plane or heatsink to maximize thermal performance. Not intended as an electrical connection point.

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Typical Operating Circuit

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
68 TQFN-EP-IDP	T6800RN+6	<u>21-0192</u>	<u>90-0090</u>

Dual 1.1Gbps Pin Electronics with Integrated PMU and Level-Setting DACs

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/08	Initial release	—
1	10/08	Corrected error in Table 2 and formula on page 57	36, 57
2	12/08	Added new Tables 6 and 7 and renumbered subsequent tables	37, 38, 41, 42, 44, 45, 46, 48, 50–54, 56, 57, 58
3	4/09	Made spec changes and clarifications	5–8, 20, 57
4	6/09	Corrected Typical Operating Circuit	59, 42
5	1/11	Updated Pin Description, Exposed Pad section, and Package Information	33, 58, 59
6	8/11	Clarified use of exposed die attach pad	33, 58
7	5/19	Updated Table 2 and Table 9	36, 42

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.