ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

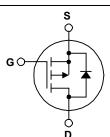
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

FQP2P40

P-Channel QFET® MOSFET -400 V, -2.0 A, 6.5 Ω

Description


These P-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for electronic lamp ballast based on complimentary half bridge.

Features

- -2.0 A, -400 V, $R_{DS(on)}$ = 6.5 Ω (Max.) @ V_{GS} = -10 V
- Low Gate Charge (Typ. 10 nC)
- Low Crss (Typ. 6.5 pF)
- · Fast Switching
- · 100% Avalanche Tested
- · Improved dv/dt Capability

Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter		FQP2P40-F080	Unit		
V _{DSS}	Drain-Source Voltage		-400	V		
I _D	Drain Current - Continuous (T _C = 25°C))	-2.0	Α		
	- Continuous (T _C = 100°C)		-1.27	Α		
I _{DM}	Drain Current - Pulsed	(Note 1)	-8.0	А		
V _{GSS}	Gate-Source Voltage		± 30	V		
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	120	mJ		
I _{AR}	Avalanche Current	(Note 1)	-2.0	A		
E _{AR}	Repetitive Avalanche Energy (Note 1)		6.3	mJ		
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-4.5	V/ns		
P _D	Power Dissipation (T _C = 25°C)		63	W		
	- Derate Above 25°C		0.51	W/°C		
T _J , T _{STG}	Operating and Storage Temperature Range	е	-55 to +150	°C		
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C		

Thermal Characteristics

Symbol	Parameter	FQP2P40-F080	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	1.98	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink, Typ.	0.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	°C/W

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FQP2P40-F080	FQP2P40	TO-220	Tube	N/A	N/A	50 units

$ \begin{array}{c} \Delta BV_{DSS} \\ / \Delta T_J \\ / \Delta D_J \\ / \Delta D_J \\ / \Delta D_J \\ \\ Zero Gate Voltage Drain Current \\ \hline \\ V_{DS} = -400 \text{ V}, V_{GS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, T_C = 125^\circ \text{C} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -250 \text{ µA} \\ \hline \\ V_{DS} = -320 \text{ V}, V_{DS} = 0 \text{ V} \\ \hline \\ V_{DS} = -250 \text{ µA} \\ \hline \\ V_{DS} = -250 \text{ µA} \\ \hline \\ V_{DS} = -100 \text{ V} \\ \hline \\ V_{DS} = -250 \text{ V} \\ \hline \\ V_{DS} = -200 V$	Symbol	Parameter	Parameter Test Conditions		Тур.	Max.	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Off Cha	aracteristics					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-400			V
	ΔBV _{DSS} / ΔT _J	• .	I_D = -250 μ A, Referenced to 25°C		-		V/°C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -400 V, V _{GS} = 0 V			-1	μΑ
In the logs of the log of the			V _{DS} = -320 V, T _C = 125°C			-10	μΑ
On Characteristics V _{GS} (th) Gate Threshold Voltage V _{DS} = V _{GS} , I _D = -250 μA -3.0 -5.0 V R _{DS} (on) Static Drain-Source On-Resistance V _{GS} = -10 V, I _D = -1.0 A 5.0 6.5 Ω g_{FS} Forward Transconductance V _{DS} = -50 V, I _D = -1.0 A 1.42 S Dynamic Characteristics C_{iss} Input Capacitance V _{DS} = -25 V, V _{GS} = 0 V, f = 1.0 MHz 270 350 pF C_{oss} Output Capacitance f = 1.0 MHz 45 60 pF C_{rss} Reverse Transfer Capacitance 6.5 8.5 pF Switching Characteristics $t_{d(on)}$ Turn-On Delay Time V _{DD} = -200 V, I _D = -2.0 A, V _{GS} = -10 V, R _G = 25 Ω 9 30 ns $t_{d(off)}$ Turn-Off Delay Time V _{GS} = -10 V, R _G = 25 Ω 33 75 ns $t_{d(off)}$ Turn-Off Fall Time V _{DS} = -320 V, I _D = -2.0 A, V _{DS} = -2.0 A, V _{DS} =	I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
$V_{GS(th)}$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \mu A$ -3.0 $$ -5.0 $V_{CS(th)}$ Static Drain-Source On-Resistance $V_{GS} = -10 V$, $I_D = -1.0 A$ $$ 5.0 6.5 $Ω$ 0.5	I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
$ \begin{array}{c} {\sf R}_{\sf DS(on)} & {\sf Static Drain\text{-}Source} \\ {\sf On\text{-}Resistance} & {\sf V}_{\sf GS} = -10 {\sf V}, {\sf I}_{\sf D} = -1.0 {\sf A} \\ {\sf G}_{\sf FS} & {\sf Forward Transconductance} & {\sf V}_{\sf DS} = -50 {\sf V}, {\sf I}_{\sf D} = -1.0 {\sf A} \\ {\sf V}_{\sf DS} = -50 {\sf V}, {\sf I}_{\sf D} = -1.0 {\sf A} \\ {\sf Dynamic Characteristics} \\ \hline \\ {\sf C}_{\sf iss} & {\sf Input Capacitance} & {\sf V}_{\sf DS} = -25 {\sf V}, {\sf V}_{\sf GS} = 0 {\sf V}, \\ {\sf f} = 1.0 {\sf MHz} &$	On Cha	aracteristics					
$ \begin{array}{c} {\sf R}_{\sf DS(on)} & {\sf Static Drain\text{-}Source} \\ {\sf On\text{-}Resistance} & {\sf V}_{\sf GS} = -10 {\sf V}, {\sf I}_{\sf D} = -1.0 {\sf A} \\ {\sf G}_{\sf FS} & {\sf Forward Transconductance} & {\sf V}_{\sf DS} = -50 {\sf V}, {\sf I}_{\sf D} = -1.0 {\sf A} \\ {\sf V}_{\sf DS} = -50 {\sf V}, {\sf I}_{\sf D} = -1.0 {\sf A} \\ {\sf Dynamic Characteristics} \\ \hline \\ {\sf C}_{\sf iss} & {\sf Input Capacitance} & {\sf V}_{\sf DS} = -25 {\sf V}, {\sf V}_{\sf GS} = 0 {\sf V}, \\ {\sf f} = 1.0 {\sf MHz} &$	V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-3.0		-5.0	V
	R _{DS(on)}		V _{GS} = -10 V, I _D = -1.0 A		5.0	6.5	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 _{FS}	Forward Transconductance	V _{DS} = -50 V, I _D = -1.0 A		1.42		S
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dynam	ic Characteristics		•	•		,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{iss}	Input Capacitance	V _{DS} = -25 V, V _{GS} = 0 V,		270	350	pF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{oss}	Output Capacitance	20		45	60	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{rss}	Reverse Transfer Capacitance			6.5	8.5	pF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Switch	ing Characteristics			,	,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{d(on)}	Turn-On Delay Time	V _{DD} = -200 V. I _D = -2.0 A.		9	30	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t _r	Turn-On Rise Time	V_{GS} = -10 V, R_G = 25 Ω		33	75	ns
Q_g Total Gate Charge V_{DS} = -320 V, I_D = -2.0 A, V_{CS} = -10 V V_{CS} = -10 V V_{CS} = -10 C	$t_{d(off)}$	Turn-Off Delay Time			22	55	ns
Q_{gs} Gate-Source Charge V_{GS} = -10 V 2.1 nC	t _f	Turn-Off Fall Time	(Note 4)		25	60	ns
	Qg	Total Gate Charge	$V_{DS} = -320 \text{ V}, I_{D} = -2.0 \text{ A},$		10	13	nC
	Q _{gs}	Gate-Source Charge	V _{GS} = -10 V		2.1		nC
	Q _{gd}	Gate-Drain Charge	(Note 4)		5.5		nC

Drain-Source Diode Characteristics and Maximum Ratings

I _S	Maximum Continuous Drain-Source Diode Forward Current				-2.0	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				-8.0	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -2.0 \text{ A}$			-5.0	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_{S} = -2.0 \text{ A},$		250		ns
Q _{rr}	Reverse Recovery Charge	dI _F / dt = 100 A/μs		0.85		μС

- 1. Repetitive rating : pulse-width limited by maximum junction temperature.
- 2. L = 52.5 mH, I_{AS} = -2.0 A, V_{DD} = -50 V, R_G = 25 Ω , Starting T_J = 25°C.
- 3. I $_{SD} \leq$ -2.0 A, di/dt \leq 200 A/µs, V $_{DD} \leq$ BV $_{DSS,}$ Starting T $_{J}$ = 25°C.
- 4. Essentially independent of operating temperature.

Typical Performance Characteristics

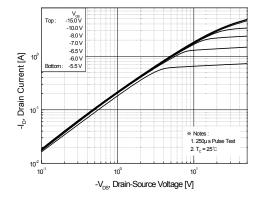


Figure 1. On-Region Characteristics

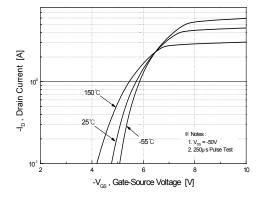


Figure 2. Transfer Characteristics

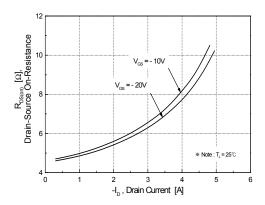


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

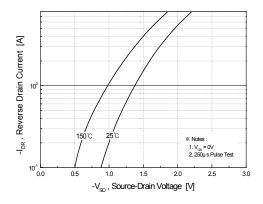


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

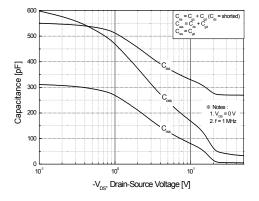


Figure 5. Capacitance Characteristics

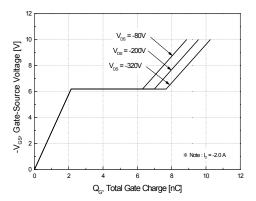
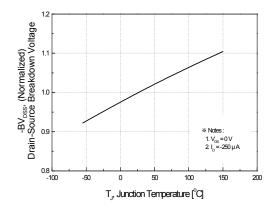
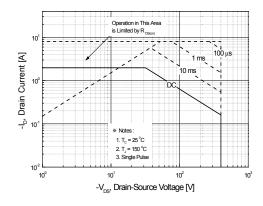



Figure 6. Gate Charge Characteristics


Typical Performance Characteristics (Continued)

25 (Nomalized) 1.5 (Nomalized)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

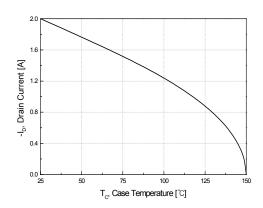


Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

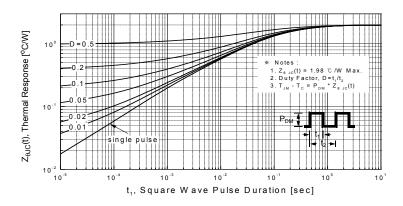


Figure 11. Transient Thermal Response Curve

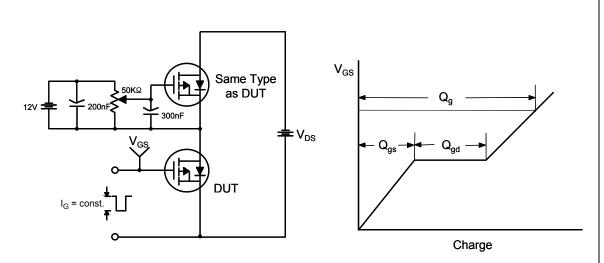


Figure 12. Gate Charge Test Circuit & Waveform

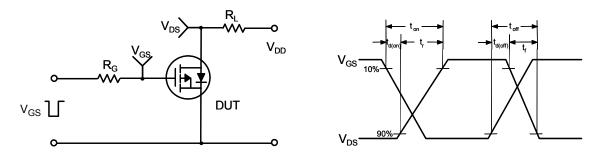
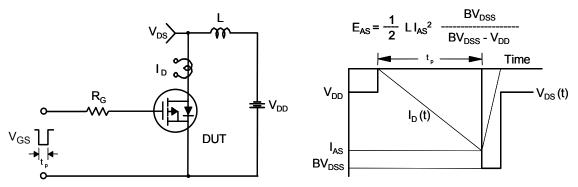
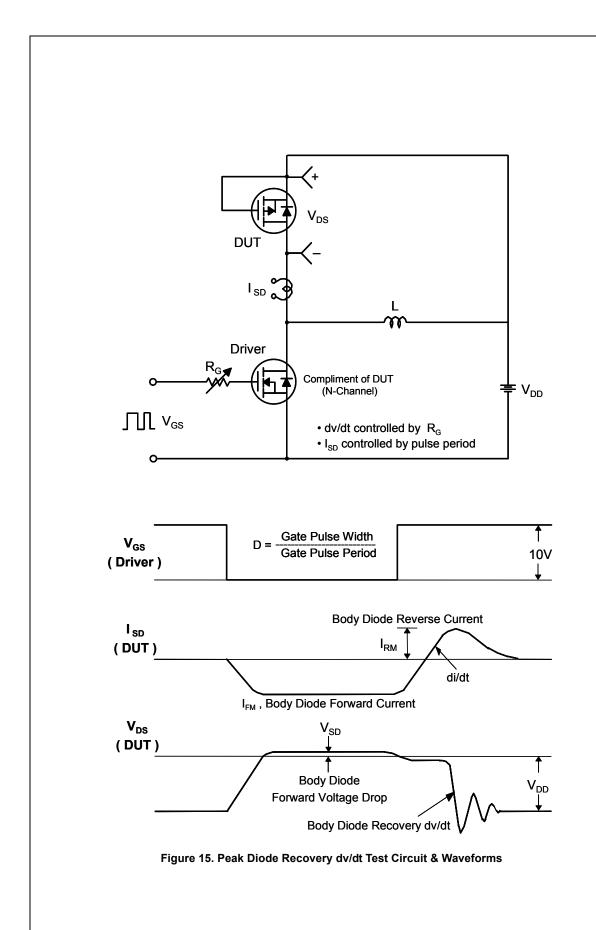
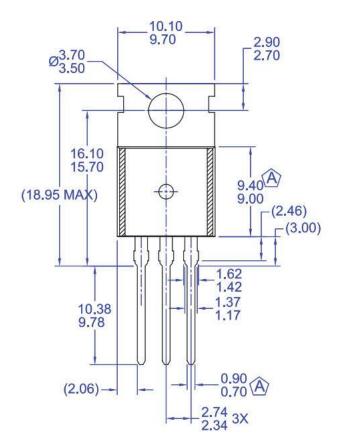
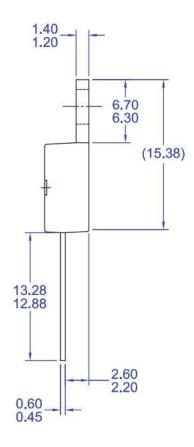
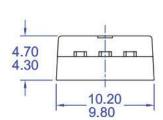


Figure 13. Resistive Switching Test Circuit & Waveforms


Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms



www.onsemi.com

Mechanical Dimensions

NOTES:

- (A) CONFORMS TO JEDEC TO-220 VARIATION AB EXCEPT WHERE NOTED
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D) DRAWING FILE/REVISION: MKT-TO220Y03REV1

Figure 16. TO220, Molded, 3-Lead, Jedec Variation AB

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative