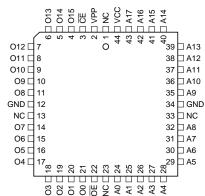
Features

- Fast Read Access Time 55 ns
- Low Power CMOS Operation
 - 100 µA Maximum Standby
 - 40 mA Maximum Active at 5 MHz
- JEDEC Standard Packages
 - 40-Lead 600 mil PDIP
 - 44-Lead PLCC
 - 40-Lead VSOP (10 mm x 14 mm)
- Direct Upgrade from 512K-bit, 1M-bit, and 2M-bit (AT27C516, AT27C1024, and AT27C2048) EPROMs
- 5V ± 10% Power Supply
- High Reliability CMOS Technology
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Rapid™ Programming Algorithm 50 µs/word (typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Commercial and Industrial Temperature Ranges

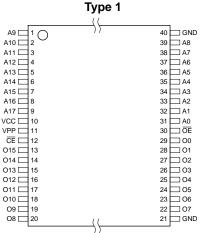
Description


The AT27C4096 is a low-power, high-performance 4,194,304-bit one-time programmable read only memory (OTP EPROM) organized 256K by 16 bits. It requires a single 5V power supply in normal read mode operation. Any word can be accessed in *(continued)*

Pin Configurations

Pin Name	Function
A0 - A17	Addresses
O0 - O15	Outputs
CE	Chip Enable
ŌĒ	Output Enable
NC	No Connect

Note: Both GND pins must be connected.


PLCC Top View

PDIP Top View

		$\overline{}$		1
VPP [1		40	b vcc
CE [2		39	□ A17
O15 🗆	3		38	□ A16
O14 🗆	4		37	□ A15
O13 [5		36	□ A14
O12 🗆	6		35	□ A13
O11 🗆	7		34	□ A12
O10 🗆	8		33	□ A11
O9 🗆	9		32	□ A10
O8 🗆	10		31	□ A9
GND [11		30	GND
07 □	12		29	□ A8
06 □	13		28	□ A7
O5 🗆	14		27	□ A6
O4 🗆	15		26	□ A5
O3 [16		25	□ A4
O2 [17		24	□ A3
O1 [18		23	□ A2
O0 [19		22	□ A1
OE [20		21	□ A0
	l			l

VSOP Top View

4-Megabit (256K x 16) OTP EPROM

AT27C4096

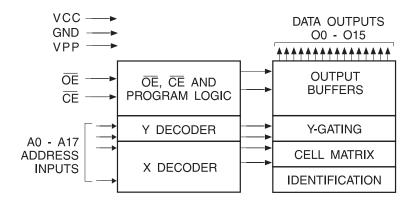
Rev. 0311F-10/98

less than 55 ns, eliminating the need for speed-reducing WAIT states. The by-16 organization makes this part ideal for high-performance 16- and 32-bit microprocessor systems.

In read mode, the AT27C4096 typically consumes 15 mA. Standby mode supply current is typically less than 10 μ A.

The AT27C4096 is available in industry standard JEDEC-approved one-time programmable (OTP) plastic PDIP, PLCC, and VSOP packages. The device features two-line control (CE, OE) to eliminate bus contention in high-speed systems.

With high density 256K word storage capability, the AT27C4096 allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.


Atmel's AT27C4096 has additional features that ensure high quality and efficient production use. The Rapid™ Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 50 µs/word. The Integrated Product Identification Code electronically identifies the device

and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 μF high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the $V_{\rm CC}$ and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μF bulk electrolytic capacitor should be utilized, again connected between the $V_{\rm CC}$ and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

1. Maximum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is $V_{CC} + 0.75V$ dc which may overshoot to +7.0V for pulses of less than 20 ns.

Operating Modes

Mode/Pin	CE	ŌĒ	Ai	V _{PP}	Outputs
Read	V _{IL}	V _{IL}	Ai	X ⁽¹⁾	D _{OUT}
Output Disable	Х	V _{IH}	X	Х	High Z
Standby	V _{IH}	Х	Х	X ⁽⁵⁾	High Z
Rapid Program ⁽²⁾	V _{IL}	V _{IH}	Ai	V _{PP}	D _{IN}
PGM Verify	V _{IH}	V _{IL}	Ai	V _{PP}	D _{OUT}
PGM Inhibit	V _{IH}	V_{IH}	X	V_{PP}	High Z
Product Identification ⁽⁴⁾	V _{IL}	V _{IL}	$A9 = V_{H}^{(3)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A17 = V_{IL}$	V _{CC}	Identification Code

Notes:

- 1. X can be V_{IL} or V_{IH}.
- 2. Refer to the Programming characteristics.
- 3. $V_H = 12.0 \pm 0.5 V$.
- 4. Two identifier words may be selected. All Ai inputs are held low (V_{IL}) , except A9, which is set to V_H , and A0, which is toggled low (V_{IL}) to select the Manufacturer's Identification word and high (V_{IH}) to select the Device Code word.
- 5. Standby V_{CC} current (I_{SB}) is specified with $V_{PP} = V_{CC}$. $V_{CC} > V_{PP}$ will cause a slight increase in I_{SB} .

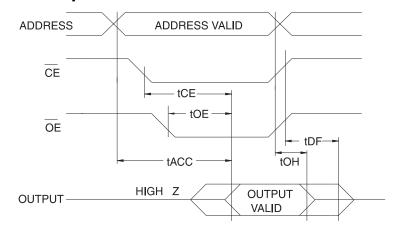
DC and AC Operating Conditions for Read Operation

				AT27C4096		
		-55	-70	-90	-12	-15
Operating	Com.	0°C - 70°C				
Temperature (Case)	Ind.	-40°C - 85°C				
V _{CC} Power Supply		5V ± 10%				

DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = 0V \text{ to } V_{CC}$		± 1	μΑ
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC}		± 5	μΑ
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = V_{CC}$		10	μΑ
	V (1) Standby Correct	$\frac{I_{SB1} \text{ (CMOS)}}{\overline{CE}} = V_{CC} \pm 0.3V$		100	μА
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	I_{SB2} (TTL) \overline{CE} = 2.0 to V_{CC} + 0.5V		1	mA
I _{CC}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$		40	mA
V _{IL}	Input Low Voltage		-0.6	0.8	V
V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}


AC Characteristics for Read Operation

							AT27	C4096					
			-:	55	-7	70	-(90	-	12		15	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC} ⁽³⁾	Address to Output Delay	CE = OE = V _{IL}		55		70		90		120		150	ns
t _{CE} ⁽²⁾	CE to Output Delay	$\overline{OE} = V_{IL}$		55		70		90		120		150	ns
t _{OE} ⁽²⁾⁽³⁾	OE to Output Delay	CE = V _{IL}		20		30		35		40		50	ns
t _{DF} ⁽⁴⁾⁽⁵⁾	OE or CE High to Output whichever occurred first			20		20		20		30		35	ns
t _{OH} ⁽⁴⁾	Output Hold from Addr whichever occurred firs		7		7		0		0		0		ns

Note: 2, 3, 4, 5. See the AC Waveforms for Read Operation diagram.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP}

AC Waveforms for Read Operation⁽¹⁾

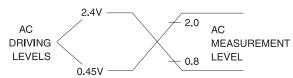
Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified.

2. $\overline{\text{OE}}$ may be delayed up to t_{CE} - t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} .

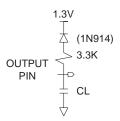
3. $\overline{\text{OE}}$ may be delayed up to t_{ACC} - t_{OE} after the address is valid without impact on t_{ACC} .

4. This parameter is only sampled and is not 100% tested.

5. Output float is defined as the point when data is no longer driven.


Input Test Waveforms and Measurement Levels

For -55 devices only:


 t_R , $t_F < 5$ ns (10% to 90%)

For -70, -90, -12 and -15 devices:

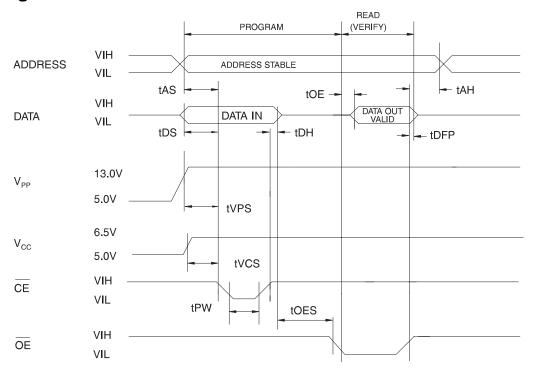
 t_R , t_F < 20 ns (10% to 90%)

Output Test Load

Note: CL = 100 pF including jig capacitance, except for the -45 and -55 devices, where CL = 30 pF.

Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$


Symbol	Тур	Max	Units	Conditions
C _{IN}	4	10	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms⁽¹⁾

Notes: 1. The Input Timing Reference is 0.8V for $V_{\rm IL}$ and 2.0V for $V_{\rm IH}$.

- 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3. When programming the AT27C4096, a 0.1 μ F capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

DC Programming Characteristics

 $T_{A} = 25 \pm 5^{\circ}C, \ V_{CC} = 6.5 \pm 0.25 V, \ V_{PP} = 13.0 \pm 0.25 V$

			Liı	mits	
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μА
V _{IL}	Input Low Level		-0.6	0.8	V
V _{IH}	Input High Level		2.0	V _{CC} + 0.7	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V
I _{CC2}	V _{CC} Supply Current (Program and Verify)			50	mA
I _{PP2}	V _{PP} Supply Current	CE = V _{IL}		30	mA
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V

AC Programming Characteristics

 $T_A = 25 \pm \ 5^{\circ}C, \ V_{CC} = 6.5 \ \pm \ 0.25V, \ V_{PP} = 13.0 \pm 0.25V$

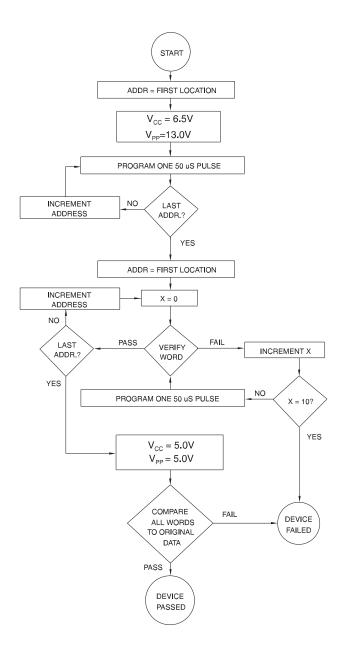
			Lin	nits		
Symbol	Parameter	Test Conditions ⁽¹⁾	Min Max		Units	
t _{AS}	Address Setup Time		2		μs	
t _{OES}	OE Setup Time		2		μs	
t _{DS}	Data Setup Time	Input Rise and Fall Times : (10% to 90%) 20 ns	2		μs	
t _{AH}	Address Hold Time	(1070 to 5070) 25 110	0		μs	
t _{DH}	Data Hold Time	Input Pulse Levels:	2		μs	
t _{DFP}	OE High to Output Float Delay ⁽²⁾	0.45V to 2.4V	0	130	ns	
t _{VPS}	V _{PP} Setup Time	Input Timing Reference Level:	2		μs	
t _{VCS}	V _{CC} Setup Time	0.8V to 2.0V	2		μs	
t _{PW}	CE Program Pulse Width ⁽³⁾	Output Timing Reference Level:	47.5	52.5	μs	
t _{OE}	Data Valid from OE	Output Timing Reference Level: 0.8V to 2.0V		150	ns	
t _{PRT}	V _{PP} Pulse Rise Time During Programming		50		ns	

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}

Atmel's 27C4096 Intergrated Product Identification Code

		Pins									
Codes	Α0	O15-O8	07	06	O5	04	О3	02	01	00	Hex Data
Manufacturer	0	0	0	0	0	1	1	1	1	0	001E
Device Type	1	0	1	1	1	1	0	1	0	0	00F4

^{2.} This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven—see timing diagram.


^{3.} Program Pulse width tolerance is 50 μ sec \pm 5%.

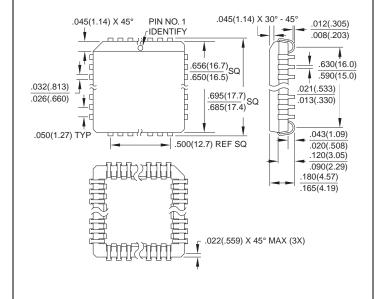
Rapid Programming Algorithm

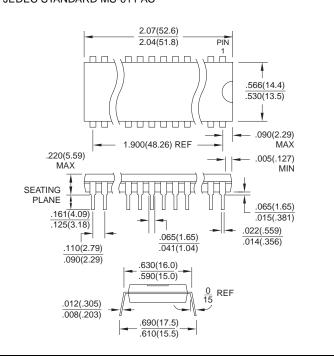
A 50 μ s $\overline{\text{CE}}$ pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 50 μ s $\overline{\text{CE}}$ pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a word fails to pass verification, up to 10 successive 50 μ s pulses are applied with a verification after each

pulse. If the word fails to verify after 10 pulses have been applied, the part is considered failed. After the word verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All words are read again and compared with the original data to determine if the device passes or fails.

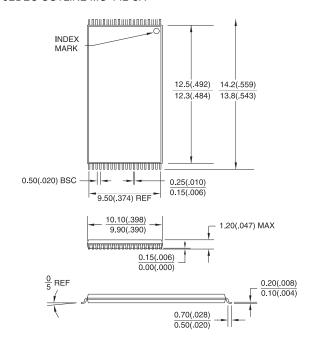
Ordering Information

	I _{CC} (mA)					
t _{ACC} (ns)	Active	Standby	Ordering Code	Package	Operation Range	
55	55 40 0.1		AT27C4096-55JC	44J	Commercial	
			AT27C4096-55PC	40P6	(0°C to 70°C)	
			AT27C4096-55VC	40V		
•	40	0.1	AT27C4096-55JI	44J	Industrial	
			AT27C4096-55PI	40P6	(-40°C to 85°C)	
			AT27C4096-55VI	40V		
70	40	0.1	AT27C4096-70JC	44J	Commercial	
			AT27C4096-70PC	40P6	(0°C to 70°C)	
			AT27C4096-70VC	40V		
•	40	0.1	AT27C4096-70JI	44J	Industrial	
			AT27C4096-70PI	40P6	(-40°C to 85°C)	
			AT27C4096-70VI	40V		
90	90 40	0.1	AT27C4096-90JC	44J	Commercial	
			AT27C4096-90PC	40P6	(0°C to 70°C)	
			AT27C4096-90VC	40V		
	40	0.1	AT27C4096-90JI	44J	Industrial	
			AT27C4096-90PI	40P6	(-40°C to 85°C)	
			AT27C4096-90VI	40V		
120	40	0.1	AT27C4096-12JC	44J	Commercial	
			AT27C4096-12PC	40P6	(0°C to 70°C)	
			AT27C4096-12VC	40V		
	40	0.1	AT27C4096-12JI	44J	Industrial	
			AT27C4096-12PI	40P6	(-40°C to 85°C)	
			AT27C4096-12VI	40V		
150	40	0.1	AT27C4096-15JC	44J	Commercial	
			AT27C4096-15PC	40P6	(0°C to 70°C)	
			AT27C4096-15VC	40V		
	40	0.1	AT27C4096-15JI	44J	Industrial	
			AT27C4096-15PI	40P6	(-40°C to 85°C)	
			AT27C4096-15VI	40V		


Package Type	
44J	44-Lead, Plastic J-Leaded Chip Carrier (PLCC)
40P6	40-Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
40V	40-Lead, Plastic Thin Small Outline Package (VSOP) 10 x 14 mm


Packaging Information

44J, 44-Lead, Plastic J-Leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters)
JEDEC STANDARD MS-018 AC


40P6, 40-Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)

Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-011 AC

40V, 40-Lead, Plastic Thin Small Outline Package (TSOP)

Dimensions in Millimeters and (Inches) JEDEC OUTLINE MO-142 CA

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia

Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan

Atmel Japan K.K. Tonetsu Shinkawa Bldg., 9F 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs

1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4 42 53 60 00 FAX (33) 4 42 53 60 01

> Fax-on-Demand North America: 1-(800) 292-8635

International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 1998.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's website. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Printed on recycled paper.