5 V ECL ÷2, ÷4/6 Clock Generation Chip

Description

The MC100EL38 is a low skew $\div 2$, $\div 4/6$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single-ended ECL or, if positive power supplies are used, PECL input signal.

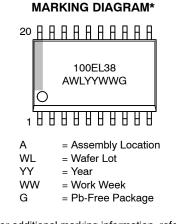
The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The common enable (\overline{EN}) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

The Phase_Out output will go HIGH for one clock cycle whenever the $\div 2$ and the $\div 4/6$ outputs are both transitioning from a LOW to a HIGH. This output allows for clock synchronization within the system.

Upon startup, the internal flip-flops will attain a random state; therefore, for systems which utilize multiple EL38s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one EL38, the MR pin need not be exercised as the internal divider design ensures synchronization between the $\div 2$ and the $\div 4/6$ outputs of a single device.

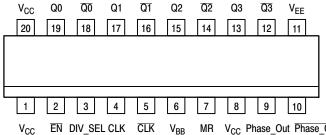
- 50 ps Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- ESD Protection:
 - 2 kV Human Body Model
 - ♦ 100 V Machine Model
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range:
 - V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range:
 - $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal 75 kΩ Input Pulldown Resistors on CLK, EN, MR, and DIVSEL
- Q Output will Default LOW with Inputs Open or at V_{EE}
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test



ON Semiconductor®

www.onsemi.com

SOIC-20 WB DW SUFFIX CASE 751D-05


*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100EL38DWR2G	SOIC–20 WB (Pb-Free)	1000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

- Moisture Sensitivity Level: 3 (Pb-Free)
 - For Additional Information, see Application Note <u>AND8003/D</u>
- Flammability Rating:
 - UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 388 devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Pinout Assignment (Top View)

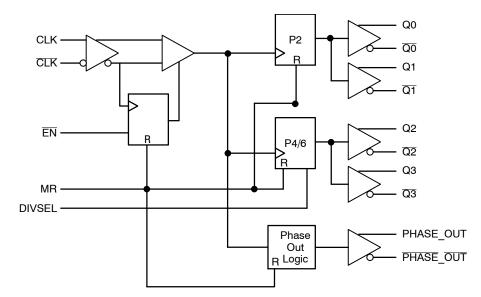


Figure 2. Logic Diagram

Table 1. PIN DESCRIPTION

Pin	Function
CLK, <u>CLK</u>	ECL Diff Clock Inputs
$Q_0, Q_{1;} \overline{Q_0}, \overline{Q_1}$	ECL Diff +2 Outputs
$Q_2, Q_{3;} \overline{Q_2}, \overline{Q_3}$	ECL Diff ÷4/6 Outputs
ĒN	ECL Sync Enable Input
MR	ECL Master Reset Input
DIVSEL	ECL Frequency Select Input
Phase_Out, Phase_Out	ECL Phase Sync Diff. Signal Output
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply

Table 2. FUNCTION TABLE

CLK	EN	MR	Function
Z	L	L	Divide
ZZ	H	L	Hold Q ₀₋₃
X	X	H	Reset Q ₀₋₃

Z = Low-to-High Transition

ZZ = High-to-Low Transition

X = Don't Care

DIVSEL	Q_2, Q_3 OUTPUTS
L	Divide by 4
H	Divide by 6

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 -6	V
l _{out}	Output Current	Continuous Surge		50 100	MA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 WB	90 60	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	°C/W
T _{sol}	Wave Solder (Pb-Free)	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. 100EL SERIES PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0.0 V (N	lote 1))
---	----------

			−40°C		25°C							
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I _{EE}	Power Supply Current		50	60		50	60		54	65	mA	
V _{OH}	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV	
V _{OL}	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV	
VIH	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV	
VIL	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV	
V_{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V	
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3)	1.65		4.45	1.65		4.45	1.65		4.45	V	
I _{IH}	Input HIGH Current			150			150			150	μA	
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μA	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

V_{IHCMR} min varies 1:1 with V_{EF}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

		T									
			–40°C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		50	60		50	60		54	65	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3)	-3.35		-0.55	-3.35		-0.55	-3.35		-0.55	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.
Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 6. AC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1)

			-40°C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
t _{PLH} t _{PHL}	$\begin{array}{l} \mbox{Propagation Delay to Output} \\ \mbox{CLK} \rightarrow \mbox{Q} \mbox{(Differential)} \\ \mbox{CLK} \rightarrow \mbox{Q} \mbox{(Single-Ended)} \\ \mbox{CLK} \rightarrow \mbox{Phase_Out} \mbox{(Differential)} \\ \mbox{CLK} \rightarrow \mbox{Phase_Out} \mbox{(Single-Ended)} \\ \mbox{MR} \rightarrow \mbox{Q} \end{array}$	810 710 800 750 510		1010 1010 1000 1050 810	850 750 840 790 540		1050 1050 1040 1090 840	900 800 890 840 570		1100 1100 1090 1140 870	ps
t _{SKEW}	Within-Device Skew (Note 2) $Q_0 - Q_3$ All			50 75			50 75			50 75	ps
t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
	Part-to-Part Q ₀ – Q ₃ (Differential) All			200 240			200 240			200 240	
t _S	$\begin{array}{l} \text{Setup Time} \\ \overline{\text{EN}} \rightarrow \overline{\text{CLK}} \\ \text{DIVSEL} \rightarrow \text{CLK} \end{array}$		150			150			150		ps
t _H	$\begin{array}{l} \mbox{Hold Time} \\ \hline \mbox{CLK} \rightarrow \hline \mbox{EN} \\ \mbox{CLK} \rightarrow \mbox{Div} \mbox{Sel} \end{array}$		150 200			150 200			150 200		ps
V _{PP}	Input Swing (Note 3)	150		1000	150		1000	150		1000	mV
t _{RR}	Reset Recovery Time			100			100			100	ps
t _{PW}	Minimum Pulse Width CLK MR	800 700			800 700			800 700			ps
t _r , t _f	Output Rise/Fall Times Q (20% - 80%)	280		550	280		550	280		550	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. V_{FF} can vary +0.8 V / -0.5 V.

2. Skew is measured between outputs under identical transitions.

3. V_{PP(}min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ~40.

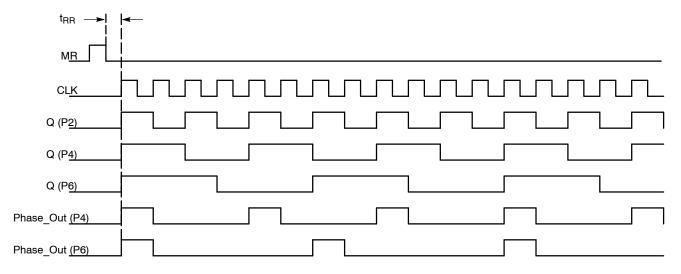


Figure 3. Timing Diagram

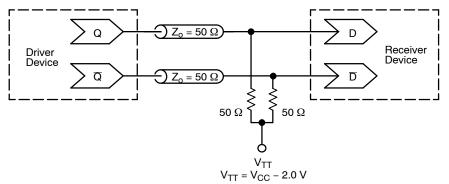
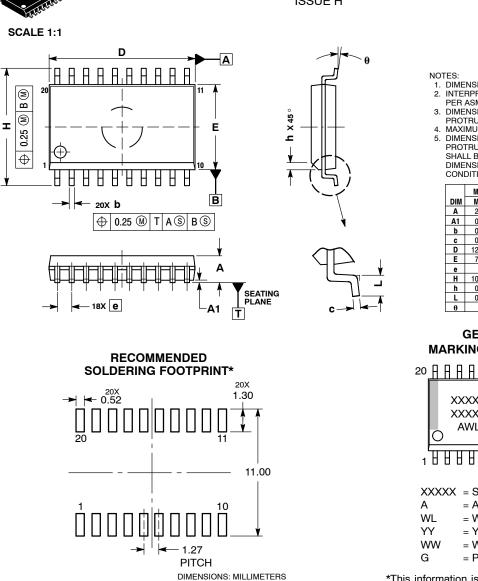
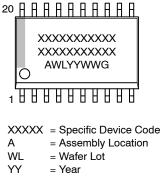



Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	_	Termination of ECL Logic Devices
AND8066/D	_	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DATE 22 APR 2015

- 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES
- PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS
DIM	MIN	MAX
Α	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
C	0.23	0.32
D	12.65	12.95
E	7.40	7.60
е	1.27	BSC
н	10.05	10.55
h	0.25	0.75
L	0.50	0.90
θ	0 °	7 °

GENERIC **MARKING DIAGRAM***

- = Work Week
- = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42343B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION: SOIC-20 WB PAGE 1 O		PAGE 1 OF 1	
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.			

DUSEM

SOIC-20 WB CASE 751D-05 ISSUE H

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales