

Vishay Siliconix

0.4- Ω , Low Voltage, Dual SPST Analog Switch

DESCRIPTION

The DG2747, DG2748, and DG2749 are high performance, low on-resistance analog switches of dual SPST configuration.

Built on Vishay Siliconix's sub-micro CMOS technology, the DG2747, DG2748, DG2749 achieve switch on-resistance of 0.4 Ω at 2.7 V V+ and 0.3 Ω at 4.3 V V+. It provides 0.1 Ω flatness at 2.7 V V+, and total harmonic distortion to 0.03 % (frequency range 20 Hz to 20 kHz). It achieves - 72 dB off-isolation and - 100 dB crosstalk at 100 kHz. Its - 3 dB bandwidth is up to 93 MHz.

It can switch signals with amplitudes of up to V_{CC} to be transmitted in either direction.

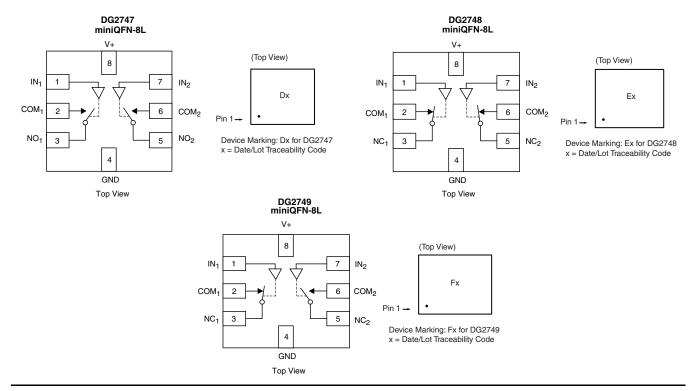
The select pins of the control logic can tolerate voltages above V+. Logic high is 1.4 V to make it compatible with many low voltage digital control circuits.

Combining wide operation voltage, low power, high speed, low on-resistance and small physical size, the DG2747, DG2748, DG2749 are ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG2747, DG2748, DG2749 come in a small miniQFN-8 lead package ($1.4 \times 1.4 \times 0.55 \text{ mm}$). As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations and is 100 % RoHS compliant.

FEATURES

- Wide operation voltage range: 1.6 V to 4.3 V
- Low on-resistance: 0.4 Ω typ. at 2.7 V
 Low voltage logic threshold:
- $V_{th(high)} = 1.4 V \text{ at } V_{th} = 3 V$
- 100 dB crosstalk at 100 kHz
- > 250 mA latch up current per JESD78
- Switch exceeds 7 kV ESD/HBM


BENEFITS

- Ultra small miniQFN8 package of 1.4 x 1.4 x 0.55 mm
- High fidelity audio switch
- Reed relay replacement
- Low power consumption

APPLICATIONS

- Cellular phones
- Portable media player
- GPS
- PCMCIA cards
- Medical and test equipment

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

ROHS COMPLIANT

Vishay Siliconix

TRUTH TABLE							
Logio	DG2747		DG2	DG2748 DG2749			
Logic	COM_1 and NO_1	COM_2 and NO_2	COM_1 and NC_1	COM_2 and NC_2	COM_1 and NC_1	COM_2 and NO_2	
Low	OFF	OFF	ON	ON	ON	OFF	
High	ON	ON	OFF	OFF	OFF	ON	

ORDERING INFORMATION					
Temp. Range	Package	Part Number			
- 40 °C to 85°C	miniQFN-8L	DG2747DN-T1-E4 DG2748DN-T1-E4 DG2749DN-T1-E4			

Parameter		Limit	Unit	
Reference to GND	V+	- 0.3 to 5.0	v	
Reference to GND	IN, COM, NC, NO ^a	- 0.3 to (V+ + 0.3)	V	
Current (Any terminal except NO, NC or	COM)	30		
Continuous Current (NO, NC, or COM)		± 300	mA	
Peak Current (Pulsed at 1 ms, 10 % duty	cycle)	± 500		
Storage Temperature (D Suffix)		- 65 to 150	°C	
Power Dissipation (Packages) ^b	miniQFN-8L ^c	190	mW	

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads welded or soldered to PC board.

c. Derate 2.4 mW/°C above 70 °C.

Vishay Siliconix

$ \begin{array}{ c c c c c c } \hline Parameter & Symbol & V+ = 3 V, \pm 10 \% V_{N} = 0.4 V \text{ or } 1.4 V^{9} & Temp.^{3} & Min.^{b} & Typ.^{c} & Max.^{b} & Unit \\ \hline Analog Switch & & & & & & & & & & & & & & & & & & &$			Test Conditions		Limits			<u> </u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			•		- 40 °C to 85 °C		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Symbol	V+ = 3 V, \pm 10 %, V _{IN} = 0.4 V or 1.4 V ^e	Temp. ^a	Min. ^b	Typ. ^c	Max. ^b	Unit
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	•			_				
$ \begin{array}{ c c c c c c } On-Resistance & $P_{DS(nn)}$ & $V+=2.7 V, $I_{NONC}=100 mA, $V_{COM}=1.5 V$ & I_{OUII} & 0.4 & 0.5 & $V_{+}=2.7 V, $I_{NONC}=100 mA, $V_{COM}=0.5 V$ & $V_{+}=2.7 V, $I_{NONC}=100 mA, $V_{COM}=1.5 V$ & $V_{-}=2.7 V, $I_{NONC}=100 mA, $V_{COM}=1.5 V$ & $V_{-}=2.7 V, $I_{NONC}=100 mA, $V_{COM}=0.5 V$ & $V_{-}=2.2 & 2 & $V_{-}=1.0 V$ & $V_{-}=2.2 & $V_{-}=2.2 & $V_{-}=1.0 V$ & $V_{-}=2.2 & $V_{-}=2.2 & $V_{-}=1.0 V$ & $V_{-}=1.5 V$ & $V_{-}=1.0 V$ & $V_{-}=2.2 & $V_{-}=2.2 & $V_{-}=1.0 V$ & $V_{-}=1.5 V$ & $V_{-}=1.0 V$ & $V_{-}=2.2 & $V_{-}=2.2 & $V_{-}=1.0 V$ & $V_{-}=1.5 V$ & $V_{-}=1.0 V$ & $V_{-}=2.2 & $V_{-}=2.2 & $V_{-}=1.0 V$ & $V_{-}=2.2 & $	Analog Signal Range ^d	V _{analog}		Full	0		V+	V
$ \begin{array}{ c c c c c } On-Resistance & R_{DS(on)} & \hline V+ = 2.7 & V, \ N_{ONC} = 100 \ mA, \ V_{COM} = 0.5 & V \\ \hline V+ = 2.7 & V, \ N_{ONC} = 100 \ mA, \ V_{COM} = 0.5 & V \\ \hline V+ = 2.7 & V, \ N_{ONC} = 100 \ mA, \ V_{COM} = 0.5 & V \\ \hline V+ = 2.7 & V, \ N_{ONC} = 100 \ mA, \ V_{COM} = 0.5 & V \\ \hline V+ = 2.7 & V, \ N_{ONC} = 100 \ mA, \ V_{COM} = 0.5 & V \\ \hline V_{CM} = 0.5 & V, 1.5 & V \\ \hline R_{ON} \ Resistance \ Flatness^d & \hline R_{ON} & V+ = 2.7 & V, \ N_{ONC} = 100 \ mA, \ V_{COM} = 0.5 & V, 1.5 & V \\ \hline R_{ON} \ Resistance \ Flatness^d & \hline R_{ON} & V+ = 2.7 & V, \ N_{ONC} = 100 \ mA, \ V_{COM} = 0.5 & V, 1.5 & V \\ \hline R_{OM} \ Resistance \ Flatness^d & \hline R_{ON} & V+ = 2.7 & V, \ N_{ONC} = 100 \ mA, \ V_{COM} = 0.5 & V, 1.5 & V \\ \hline R_{OM} \ R_{OM} \$				Boom	0.4	0.4	0.6	
$ \begin{array}{ c c c c c } \hline W + 2.7 V, \ W_{DNC} = 100 \ mA, \ V_{COM} = 0.5 \ V \\ \hline V + 2.7 V, \ W_{NONC} = 100 \ mA, \ V_{COM} = 1.5 \ V \\ \hline V + 2.7 V, \ W_{NONC} = 100 \ mA, \ V_{COM} = 1.5 \ V \\ \hline W + 2.7 V, \ W_{NONC} = 100 \ mA, \ V_{COM} = 0.5 \ V, \ 1.5 \ V \\ \hline W + 2.7 V, \ W_{NONC} = 100 \ mA, \ V_{COM} = 0.5 \ V, \ 1.5 \ V \\ \hline W + 2.7 V, \ W_{NONC} = 100 \ mA, \ V_{COM} = 0.5 \ V, \ 1.5 \ V \\ \hline W + 2.7 V, \ W_{NONC} = 100 \ mA, \ V_{COM} = 0.5 \ V, \ 1.5 \ V \\ \hline W + 2.7 V, \ W_{NONC} = 100 \ mA, \ V_{COM} = 0.5 \ V, \ 1.5 \ V \\ \hline W + 2.7 V, \ W_{NONC} = 100 \ mA, \ V_{NONC} = 1.0 \ V/3.3 \ V, \ V_{OOM} = 2 \ 2 \ 2 \ V_{NONC} = 1.0 \ V/3.3 \ V, \ V_{OOM} = 2 \ 2 \ 2 \ V_{VOM} \\ \hline W + 2.4 \ 3.V, \ W_{NONC} = 1.0 \ V/3.3 \ V, \ V_{OOM} = 2 \ 2 \ 2 \ V_{VOM} \\ \hline W + 2.4 \ 3.V, \ W_{NONC} = V_{COM} = 3.3 \ V/1.0 \ V \\ \hline W + 2.4 \ 3.V, \ W_{NONC} = V_{COM} = 3.3 \ V/1.0 \ V \\ \hline W + 2.4 \ 4.3 \ V, \ W_{NONC} = V_{COM} = 3.3 \ V/1.0 \ V \\ \hline W + 2.4 \ 4.3 \ V, \ W_{OOM} = V_{OOM} = 3.3 \ V/1.0 \ V \\ \hline W + 2.4 \ 4.3 \ V, \ W_{NONC} = V_{COM} = 3.3 \ V/1.0 \ V \\ \hline W + 2.4 \ 4.3 \ V, \ W_{NONC} = V_{COM} = 3.3 \ V/1.0 \ V \\ \hline W + 2.4 \ 4.3 \ V, \ W_{NONC} = V_{COM} = 3.3 \ V/1.0 \ V \\ \hline W + 100 \ 1.0 \ 10 \ V \\ \hline W + 2.4 \ V_{N} = 0 \ or \ V + \ W \\ \hline W + 10 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.0 \ 10 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ 1.4 \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \ V \\ \hline W + 100 \ 1.4 \ 1.4 \ 1.4 \ V \ W \\ \hline W + 10 \ 1.4 \ 1.4 \ 1.4 \ 1.4 \ V \ W \ W \ W \ W \ W \ W \ W \ W \ W$	On-Resistance	Bog(an)		ricom		0.1	0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	on noolotanoo	· ·DS(on)		Full			07	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				i un			0.7	Ω
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R _{ON} Match ^d	ΔR_{ON}		Room			0.03	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R _{ON} Resistance Flatness ^d			Room		0.1	0.2	
				Room	- 2		2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Switch Off Leakage	INO/NC(off)	$V_{+} = 4.3 \text{ V}, V_{NO/NC} = 1.0 \text{ V}/3.3 \text{ V},$	Full	- 10		10	nA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Current			Room	- 2		2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ICOM(off)		Full	- 10		10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Channel-On Leakage			Room	- 2		2	
$ \begin{array}{ c c c c c c c c } \hline \mbox{Input High Voltage} & V_{\rm INH} & & & & & & & & & & & & & & & & & & &$	Current	ICOM(on)	$V + = 4.3 V, V_{NO/NC} = V_{COM} = 3.3 V/1.0 V$	Full	- 10		10	
$\begin{array}{ c c c c c c c } \begin{tabuarray}{ c c c c c c } \hline \begin{tabuarray}{ c c c c c c c c c c c c c c c c c c c$	Digital Control					•		
$\begin{array}{ c c c c c c c } \begin{tabuarray}{ c c c c c c } \hline \begin{tabuarray}{ c c c c c c c c c c c c c c c c c c c$	Input High Voltage	V _{INH}		Full	1.4			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input Low Voltage			Full			0.4	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	- 1		1	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic Characteristics							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn On Time	t _{ON}		Room		14	25	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tum-On Time		$V_{+} = 2.7 V$ to 3.6 V, V_{NO} or $V_{NC} = 1.5 V$,	Full			27	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Room		12	25	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tum-On Time	^L OFF		Full			27	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Charge Injection ^d	Q	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V_{GEN} = 0 V$	Room		10		рС
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Off lealetian ^d	O _{IRR}	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 1 MHz			- 52		dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Off-Isolation"		$R_L = 50 $ Ω, $C_L = 5 $ pF, f = 100 kHz	Deem		- 72		
Introduction R _L = 50 Ω , C _L = 5 pF, f = 100 kHz - 100 - 100 3 dB bandwidth ^d R _L = 50 Ω , C _L = 5 pF Room 93 MHz Source Off Capacitance ^d C _{NX(off)} f = 1 MHz, V _{NX} = 0 V Room 75 - Drain Off Capacitance ^d C _{COM(off)} f = 1 MHz, V _{COM} = 0 V Room 55 - PF Drain On Capacitance ^d C _{COM(on)} f = 1 MHz, V _{COM} = 0 V Room 100 - - Total Harmonic Distortion ^d THD V+ = 2.7 V to 3.6 V, V _{IN} = 0.5 Vp-p f = 20 Hz to 20 kHz Room 0.03 % % Power Supply F - 1.6 4.3 V	Crosstall	×	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$, f = 1 MHz	Room		- 90		
Source Off Capacitanced $C_{NX(off)}$ $f = 1 \text{ MHz}, V_{NX} = 0 \text{ V}$ Room75 $f = 1 \text{ MHz}, V_{NX} = 0 \text{ V}$ Room75 $f = 1 \text{ MHz}, V_{COM} = 0 \text{ V}$ Room55 $f = 1 \text{ MHz}, V_{COM} = 0 \text{ V}$ Room55 $f = 1 \text{ MHz}, V_{COM} = 0 \text{ V}$ Room100 $f = 1 \text{ MHz}, V_{COM} = 0 \text{ V}$ Room100 $f = 1 \text{ MHz}, V_{COM} = 0 \text{ V}$ Room100 $f = 1 \text{ MHz}, V_{COM} = V_{NX} = 0 \text{ V}$ Room100 $f = 1 \text{ MHz}, V_{COM} = V_{NX} = 0 \text{ V}$ Room100 $f = 20 \text{ Mz} = 0.5 \text{ Vp-p}$ Room $f = 20 \text{ Hz} = 20 \text{ Hz} = 0.5 \text{ Vp-p}$ Room $f = 20 \text{ Hz} = 20 \text{ Hz} = 0.5 \text{ Vp-p}$ Room $f = 20 \text{ Hz} = 20 \text{ Hz} = 0.5 \text{ Vp-p}$ Room $f = 20 \text{ Hz} = 0.5 \text{ Vp-p}$ Room $f = 20 \text{ Hz} = 0.5 \text{ Vp-p}$ Room $f = 20 \text{ Hz} = 0.5 \text{ Vp-p}$ $f = 20 \text{ Hz} = 0.5 \text{ Vp-p}$ Room $f = 1.6 \text{ Mz}$ $f = 30 \text{ Mz} = 0.5 \text{ Mz}$ $f = 20 \text{ Hz} = 0.5 \text{ Mz}$ $f = 1.6 M$	Crossiaik	^ TALK	$R_L = 50 $ Ω, $C_L = 5 $ pF, f = 100 kHz			- 100		
Drain Off Capacitanced $C_{COM(off)}$ $f = 1 \text{ MHz}, V_{COM} = 0 \text{ V}$ Room55 pF Drain On Capacitanced $C_{COM(on)}$ $f = 1 \text{ MHz}, V_{COM} = V_{NX} = 0 \text{ V}$ Room100100Total Harmonic DistortiondTHD $V+ = 2.7 \text{ V}$ to 3.6 V, $V_{IN} = 0.5 \text{ Vp-p}$ $f = 20 \text{ Hz}$ to 20 kHzRoom0.03%Power SupplyPower Supply RangeV+1.64.3V	3 dB bandwidth ^d		$R_{L} = 50 $ Ω, $C_{L} = 5 $ pF	Room		93		MHz
Drain Off Capacitanced $C_{COM(off)}$ $f = 1 \text{ MHz}, V_{COM} = 0 \text{ V}$ Room55 pF Drain On Capacitanced $C_{COM(on)}$ $f = 1 \text{ MHz}, V_{COM} = V_{NX} = 0 \text{ V}$ Room100100Total Harmonic DistortiondTHD $V+ = 2.7 \text{ V}$ to 3.6 V, $V_{IN} = 0.5 \text{ Vp-p}$ $f = 20 \text{ Hz}$ to 20 kHzRoom0.03%Power SupplyPower Supply RangeV+1.64.3V	Source Off Capacitance ^d	C _{NX(off)}	f = 1 MHz, V _{NX} = 0 V	Room		75		
Drain On Capacitance ^d $C_{COM(on)}$ $f = 1 \text{ MHz}, V_{COM} = V_{NX} = 0 \text{ V}$ Room100Total Harmonic Distortion ^d THD $V + = 2.7 \text{ V}$ to $3.6 \text{ V}, V_{IN} = 0.5 \text{ Vp-p}$ $f = 20 \text{ Hz}$ to 20 kHz Room 0.03 $\%$ Power SupplyPower Supply RangeV+1.64.3V	Drain Off Capacitance ^d		f = 1 MHz, V _{COM} = 0 V Room			55		pF
Total Harmonic Distortion ^d THD $V + = 2.7 V \text{ to } 3.6 V, V_{IN} = 0.5 Vp-p$ f = 20 Hz to 20 kHz Room 0.03 % Power Supply Power Supply Range V+ 1.6 4.3 V							1	
Power Supply 1.6 4.3 V		Distortion ^d THD V+ = 2.7 V to 3.6 V, V_{IN} = 0.5 Vp-p						%
Power Supply Range V+ 1.6 4.3 V	Power Supply			I		I		
		V+			16		43	V
	11,30		V – 0 or V±	Full	1.0			

Notes:

a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.

b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

c. Typical values are for design aid only, not guaranteed nor subject to production testing.

d. Guarantee by design, not subjected to production test.

e. V_{IN} = input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

V+ = 2.7 V

2.5

V+ = 4.3 V Ξ

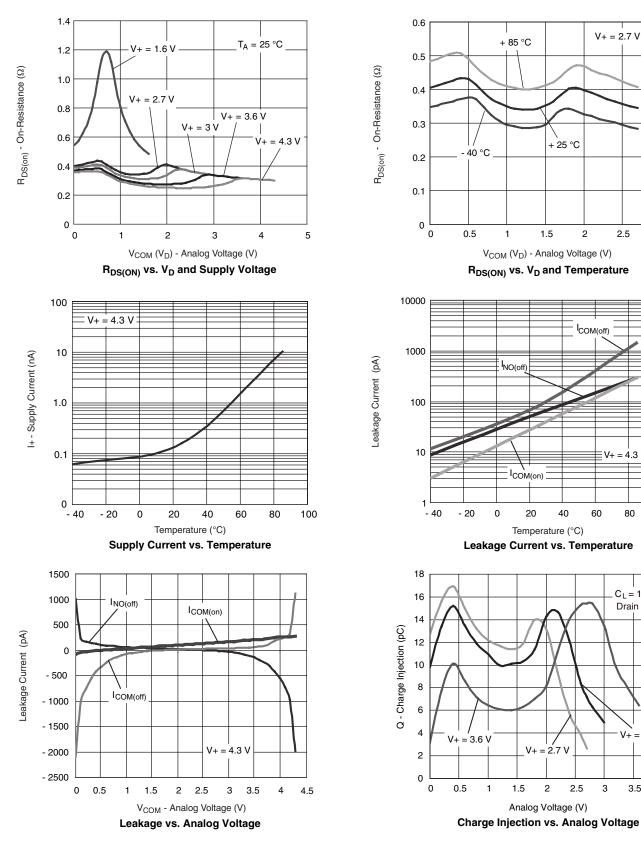
80

 $C_L = 1 nF_1$

V+ = 3 V

3.5

4

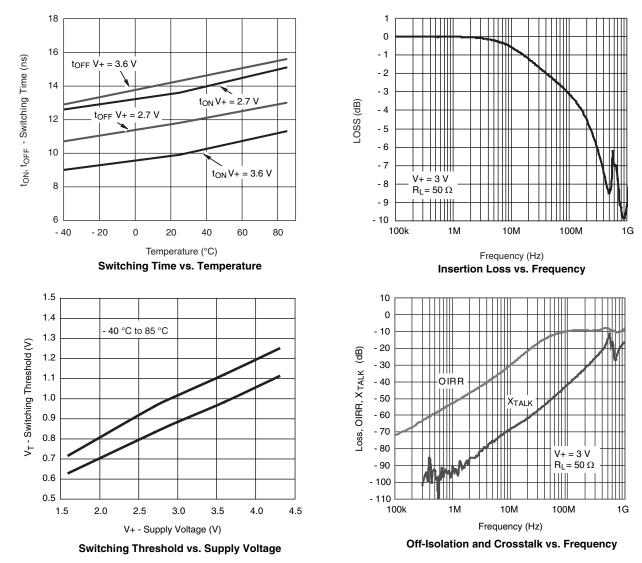

Drain

100

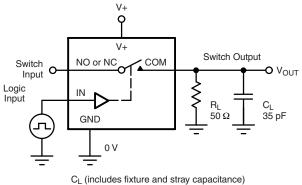
60

3

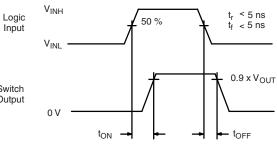
TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted



3

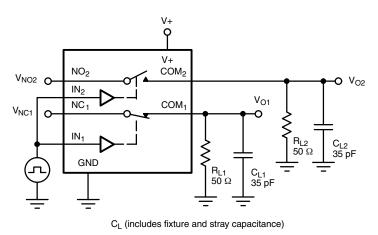

Vishay Siliconix


TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted



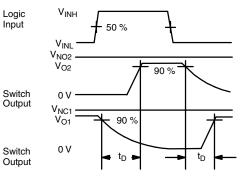
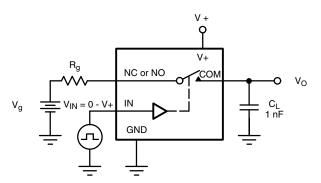
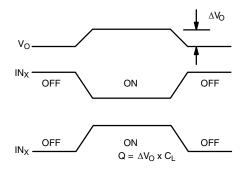
Vishay Siliconix

TEST CIRCUITS



VISHAY

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

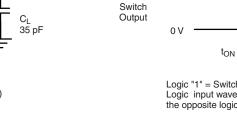

Figure 2. Break-Before-Make (DG2749)

Figure 1. Switching Time

6

Vishay Siliconix

TEST CIRCUITS

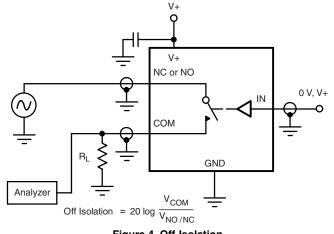
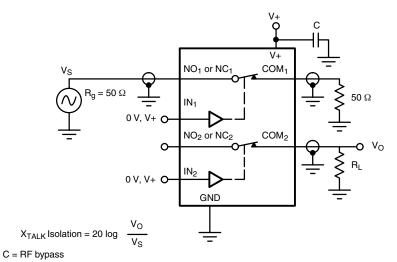
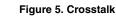




Figure 4. Off-Isolation

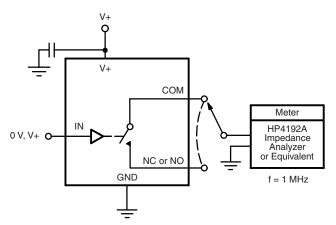
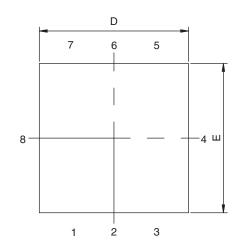
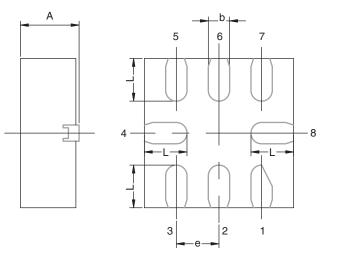
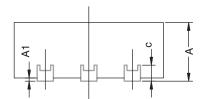


Figure 6. Channel Off/On Capacitance

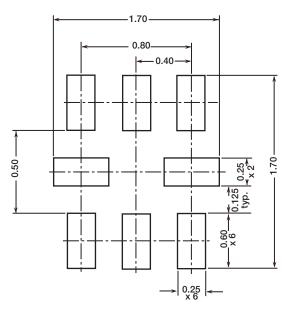

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?69977.




Package Information

Vishay Siliconix

MINIQFN-8L CASE OUTLINE



	MILLIMETERS			INCHES			
DIM	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.50	0.55	0.60	0.0197	0.0217	0.0236	
A1	0.00	-	0.05	0.000	-	0.002	
b	0.15	0.20	0.25	0.006	0.008	0.010	
С	0.15 REF			0.006 REF			
D	1.35	1.40	1.45	0.053	0.055	0.057	
E	1.35	1.40	1.45	0.053	0.055	0.057	
е	0.40 BSC			0.016 BSC			
L	0.35	0.40	0.45	0.014	0.016	0.018	
ECN: C-08336-Re DWG: 5964	ev. A, 05-May-08						

RECOMMENDED MINIMUM PADS FOR MINI QFN 8L

Suggested Minimum Pad Dimensions in mm

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.