

Features

• Frequency: 10, 19.2, 20, 25, 30.72

40, 48MHz

SMD type packageSupply voltage: 3.3V

CMOS output

• Frequency stability over temperature :

±10ppb over -40°C ~ +85°C

External dimensions (mm)
L: 9.5 x W: 7.3 x H: 5.5
RoHS compliant & Pb free

Applications

- Small cell, Base station
- OTN, PTN, Switch, Router
- Precise timing & synchronization network (IEEE1588, Sync.E)
- Enterprise networking
- Smart grid
- Test and measurement equipment

Electrical Characteristics

Item		QTO107	Conditions
Nominal Frequency (F ₀)		10 MHz	
Supply Voltage (V _{DD})		3.3 V	Note [4]
Current Consumption (I _{DD})	During warm up	550 mA Typ.	Ambient temperature at 25°C
	At steady state	170 mA Max.	
Initial Frequency Accuracy		±500 ppb Max.	Note [1]
Warm-up Time		3 minutes Max.	Note [2]
Reflow Shift		±1 ppm Max.	After 1 hour recovery at 25°C
Operating Temperature Range (T _{OTR})		-40°C ~ +85°C	
Frequency Stability	vs Temperature	±10ppb, ±15ppb, ±20ppb	Note [3]
	vs Supply Voltage	±10ppb Typ.	Note [4]
	vs Load	±10ppb Typ.	Note [5]
Frequency Slope (in still air)		±1 ppb/°C Max.	Note [6]
Output Load		15 pF	
Output Type		CMOS	
Output Voltage High (V _{OH})		90% V _{DD} Min.	
Output Voltage Low (V _{OL})		10% V _{DD} Min.	
Duty Cycle		45% ~ 55%	
Rise & Fall Time (T _r / T _f)		4 ns Max.	

QTO107 Oven Controlled Crystal Oscillator

Electrical Characteristics (Continued)

Item		QTO107	Conditions
Phase Noise (@10MHz Carrier)	at 1Hz offset	-80 dBc/Hz Typ.	
	at 10Hz offset	-112 dBc/Hz Typ.	
	at 100Hz offset	-135 dBc/Hz Typ.	Ambient temperature at
	at 1kHz offset	-150 dBc/Hz Typ.	25°C
	at 10kHz offset	-158 dBc/Hz Typ.	Note [7]
	at 100kHz offset	-158 dBc/Hz Typ.	1
	at 1MHz offset	-160 dBc/Hz Typ.	
Allan Deviation (Tau = 1.0s)		5.0* e-11 Typ.	Ambient temperature at 25°C
Aging (F _{aging})	Daily	±1.0 ppb Max.	
	1st year	±0.5 ppm Max.	After 60 days of operation
	10 years	±2.0 ppm Max.	
Free-run Accuacy		±4.6 ppm Max.	Note [8]
Storage Temperature Range (T _{STR})		-55°C ~ +125°C	

Notes:

- [1] At time of shipment, refer to nominal frequency at 25°C±2°C.
- [2] Time needed for frequency to be within ±20ppb refer to frequency after 1 hour, at 25°C.
- [3] Within operating temperature range, refer to (Fmax + Fmin)/2.
- [4] F0 < 40MHz, V_{DD} variation ±5%, refer to frequency at V_{DD} = 3.3V. F0 \geq 40MHz, V_{DD} variation ±2%, refer to frequency at V_{DD} = 3.3V.
- [5] Load variation ±5%, refer to frequency at Load = 15pF.
- [6] Temperature ramping rate 0.5°C/minute max.
- [7] Phase noise degrades with increasing output frequency.
- [8] Including all causes in 20years, refer to nominal frequency at 25°C±2°C.

Rev. 1.02 Page 2 www.qstproducts.com

Dimensions

Pin function

Pin	Function
1	No Connection
2	No Connection
3	GND
4	Output
5	No Connection
6	V_{DD}

Testing Circuit

External components		
C1	AC noise bypass for V_{DD}	
C2	AC noise bypass for V_{DD}	
CL	Load capacitance	
Note: Bypass capacitor should be placed		

Recommended Pad Layout

Notes:

- (1) Recommended exclusion area in any copper plane to isolate the OCXO from the underlying ground or power planes to reduce thermal loss.
- (2) To further minimize the thermal loss, it is also recommended that the trace connecting to the pads should not connect to any layer inside the exclusion area.
- (3) For the same reason, it is recommended to preserve the exclusion area larger than the product size of 2mm in both of length and width.

Rev. 1.02 Page 3 www.qstproducts.com

Ordering Information

Reflow Profile (Pb-free)

Rev. 1.02 Page 4 www.qstproducts.com

Packing

Notes.

- (1) 10 sprocket hole pitch cumulative tolerance is ± 0.1 mm.
- (2) Pocket positon relative to sprocket hole measured as true postion of pocket not pocket hole.
- (3) Ao & Bo measured on a place 0.3mm above the bottom of the pocket to top surface of the carrier.
- (4) Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- (5) Carrie camber shall be not than 1mm per 100mm through a length of 250mm.

Rev. 1.02 Page 5 www.qstproducts.com