General Description

The MAX4762–MAX4765 dual SPDT (single-pole/doublethrow) switches feature negative signal capability that allows signals below ground to pass through without distortion. These analog switches operate from a single +1.8V to +5.5V supply and have low 0.6Ω on-resistance, making them ideal for switching audio signals.

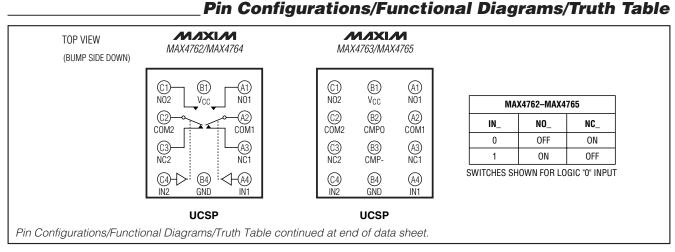
The MAX4763/MAX4765 include a comparator that can be used for headphone detection or a mute/send key function. The MAX4764/MAX4765 have an internal shunt switch to automatically discharge any capacitance at the NO and NC connection points. This reduces click-andpop sounds that occur when switching audio signals between precharged points.

These SPDT switches are available in space-saving μ MAX, TDFN, thin QFN, and UCSPTM packages and operate over the -40°C to +85°C extended temperature range.

Applications

Cell Phones PDAs and Hand-Held Devices Notebook Computers MP3 Players

Features


- Distortion-Free Negative Signal Throughput Down to V_{CC} - 5.5V
- Comparator for Headphone or Mute Detection (MAX4763/MAX4765)
- Internal Shunt Resistor Reduces Click/Pop (MAX4764/MAX4765)
- Low On-Resistance (R_{ON})
 0.6Ω at +2.7V Supply
- 0.25Ω On-Resistance Flatness
- 0.05Ω On-Resistance Matching
- +1.8V to +5.5V Supply Voltage
- -70dB Crosstalk (100kHz)
- ◆ -65dB Off-Isolation (100kHz)
- 0.01% Total Harmonic Distortion
- ♦ Available in µMAX, TDFN, Thin QFN, and UCSP Packages

_Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4762ETB	-40°C to +85°C	10 TDFN	ACG
MAX4762EUB	-40°C to +85°C	10 µMAX	_
MAX4762EBC-T	-40°C to +85°C	12 UCSP-12	ABU

UCSP is a trademark of Maxim Integrated Products, Inc.

Ordering Information continued at end of data sheet. Selector Guide appears at end of data sheet.

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

(
V _{CC} , IN_, CMP	0.3V to +6.0V
COM_, NO_, NC	$\dots (V_{CC} - 6V)$ to $(V_{CC} + 0.3V)$
CMPO	0.3V to (V _{CC} + 0.3V)
Closed-Switch Continuous Current	COM_, NO_, NC±150mA
Open-Switch Continuous Current	NO_, NC_
(MAX4764/MAX4765)	±30mA
Peak Current COM_, NO_, NC_	
(pulsed at 1ms, 50% duty cycle	e)±300mA
Peak Current COM_, NO_, NC_	
(pulsed at 1ms, 10% duty cycle	e)±400mA
Continuous Power Dissipation (TA	= +70°C)
10-Pin TDFN (derate 24.4mW/°	C above +70°C)1951mW
10-Pin µMAX (derate 5.6mW/°C	above +70°C)444mW

12-Bump UCSP (MAX4762/MAX4764)
(derate 5.6mW/°C above +70°C)449mW
12-Bump UCSP (MAX4763/MAX4765)
(derate 6.5mW/°C above +70°C)519mW
12-Pin Thin QFN (derate 16.9mW/°C above +70°C)1349mW
ESD Method 3015.7±2kV
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C
Bump Temperature (soldering)
Infrared (15s)+220°C
Vapor Phase (60s)+215°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = +2.7V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.0V, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS	
ANALOG SWITCH							•	
Analog Signal Range (Note 2)	V _{NO_} , V _{NC_} , V _{COM_}			V _{CC} - 5.5		V _{CC}	V	
On-Resistance	$V_{CC} = 2.7V; V_{NC} \text{ or } V_{NO} = T_A = +25^{\circ}C$		0.6	0.85				
(Notes 3 and 4)	R _{ON(NC),} R _{ON(NO)}	V _{CC} - 5.5V, -1V, 0V, 1V, 2V, V _{CC} ; I _{COM} _ = 100mA	T _A = T _{MIN} to T _{MAX}			0.95	Ω	
On-Resistance Match			$T_A = +25^{\circ}C$		0.05	0.1		
Between Channels (Notes 3, 4, and 5)	ΔR_{ON}	$V_{CC} = 2.7V, V_{NC}$ or $V_{NO} = 0V,$ $I_{COM} = 100mA$	$T_A = T_{MIN}$ to T_{MAX}			0.15	Ω	
On Desistance Flateres	-Resistance Flatness R _{FLAT(NC)} -1V, 0	V _{CC} = 2.7V; V _{NC} or V _{NC} = -1V, 0V, 1V, 2V, V _{CC} ; I _{COM} = 100mA	$T_A = +25^{\circ}C$		0.25	0.4		
(Notes 4 and 6)			T _A = T _{MIN} to T _{MAX}				Ω	
Shunt Switch Resistance	R _{SH}	MAX4764/MAX4765 only, I _{NO_} or I _{NC_} = 10mA, V _{CC} = 2.7V	T _A = T _{MIN} to T _{MAX}		25	50	Ω	
NO_, NC_ Off-Leakage Current	I _{NO_(OFF),}	MAX4762/MAX4763 only (Note 7), V _{CC} = 2.7V, switch open;	T _A = +25°C	-2		+2	5	
(Notes 8 and 9)	I _{NC_(OFF)}	V _{NC} or V _{NO} = -2.5V, +2.5V; V _{COM} = +2.5V, -2.5V	T _A = T _{MIN} to T _{MAX}	-10		+10	nA	
COM_ On-Leakage Current (Notes 8 and 9)	t ICOM_(ON)	$V_{CC} = 2.7V, \text{ switch closed};$ $V_{NC} \text{ or } V_{NO} = -2.5V, +2.5V, \text{ or }$ floating; $V_{COM} = -2.5V, +2.5V, \text{ or }$ floating	$T_A = +25^{\circ}C$	-3		+3	nA	
			$T_A = T_{MIN}$ to T_{MAX}	-25		+25	ΠA	

MIXXIM

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +2.7V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.0V, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
DYNAMIC CHARACTERIST	ics						•
Turn-On Time		V_{CC} = 2.7V, V_{NO} = 1.5V; for NO_, V_{IN} = 0V to V _{CC} ; for NC_, V_{IN} =	$T_A = +25^{\circ}C$		25	80	ns
Tum-On Time	ton	V_{CC} to 0V; $R_L = 300\Omega$, $C_L = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			80	115
Turn-Off Time	tOFF	V_{CC} = 2.7V, V_{NC} = 1.5V; for NO_, V _{IN} = V _{CC} to 0V; for NC_, V _{IN} = 0V	T _A = +25°C		20	70	ns
	UFF	to V _{CC} ; R _L = 300 Ω , C _L = 35pF, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			70	110
Break-Before-Make Time Delay	tD		T _A = +25°C	1	7		ns
Charge Injection	Q	V_{COM} = 0V, R_S = 0 Ω , C_L = 1.0nF, Fig	ure 4		150		рС
Off-Isolation (Note 10)	V _{ISO}	f = 100kHz, V_{COM} = 1 V_{RMS} , R_L = 50 Figure 5		-65		dB	
Crosstalk	V _{CT}	f = 100kHz, V _{COM} = 1V _{RMS} , R _L = 50 Ω , C _L = 5pF, Figure 5			-70		dB
Power-Supply Rejection Ratio	PSRR	$f = 10 \text{kHz}, \text{V}_{\text{COM}} = 1 \text{V}_{\text{RMS}}, \text{R}_{\text{L}} = 50 \Omega$		60		dB	
On-Channel -3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$, F		27		MHz	
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, V_{COM} = 0.5V_{P-P}, I R_L = 32\Omega	DC Bias = 0,		0.01		%
NO_, NC_ Off-Capacitance	C _{NO_(OFF)} C _{NC_(OFF)}	f = 1MHz, V _{COM} = 0.5V _{P-P} , DC Bias :	= 0, Figure 6		50		pF
COM On-Capacitance	CCOM_(ON)	$f = 1MHz, V_{COM} = 0.5V_{P-P}, DC Bias =$	= 0, Figure 6		200		pF
DIGITAL I/O (IN_)							
Input Logia High Voltage	Mar 1	$V_{CC} = 2.7V \text{ to } 3.6V$		1.4	1.4		V
Input Logic High Voltage	VIH	$V_{CC} = 4.2V$ to 5.5V		2.0			v
	\ <i>\</i>	$V_{IL} = \frac{V_{CC} = 2.7V \text{ to } 3.6V}{V_{CC} = 4.2V \text{ to } 5.5V}$				0.5	V
Input Logic Low Voltage	VIL					0.8	v
Input Leakage Current	lin	V_{IN} = 0V or V _{CC}		-1		+1	μA
COMPARATOR (MAX4763/I	MAX4765)						
Comparator Threshold					V _{CC} /3		V

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +2.7V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.0V, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	ТҮР	МАХ	UNITS
Comparator Output High Voltage		ISOURCE = 1mA		V _{CC} - 0.4V			V
Comparator Output Low Voltage		I _{SINK} = 1mA				0.4V	V
Comparator Input Leakage Current		V _{CMP-} = 0 to 2.7V		-100		+100	nA
Comparator Switching Time		V_{CC} = 2.7V, V_{CMP-} = 0V to V_{CC} , from 50% of V_{CMP-} to 50% of V_{CMPO}			1	2	μs
POWER SUPPLY							
Power-Supply Range	V _{CC}			1.8		5.5	V
Supply Current		$V_{CC} = 5.5V, V_{IN} = 0V \text{ or}$	MAX4763/MAX4765		5	10	
Supply Current	1+	Vcc	MAX4762/MAX4764		0.01	1	μA

Note 1: UCSP and TDFN parts are 100% tested at $T_A = +25^{\circ}$ C only, and guaranteed by design over the specified temperature range. Thin QFN parts are 100% tested at $T_A = +85^{\circ}$ C only, and guaranteed by design over the specified temperature range.

Note 2: Signals on COM_, NO_, or NC_ exceeding V_{CC} are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Note 3: Thin QFN and UCSP are guaranteed by design; not production tested.

Note 4: I_{COM} for UCSP is 10mA.

Note 5: $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$.

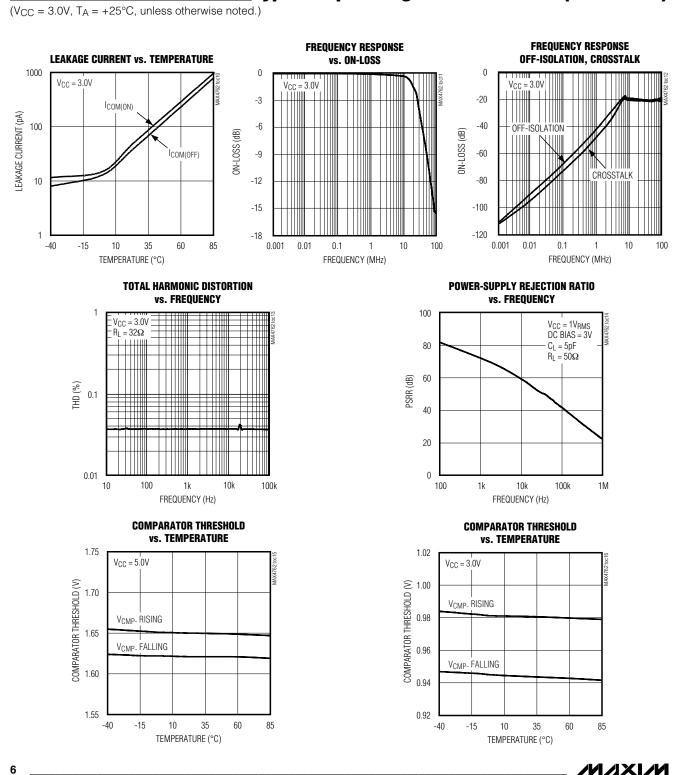
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Note 7: MAX4764/MAX4765 have an internal shunt switch when in off-state, which determines OFF current.

Note 8: Leakage parameters are 100% tested at maximum-rated hot operating temperature and guaranteed by design at $T_A = +25^{\circ}C$.

Note 9: UCSP parts are guaranteed by design.

Note 10: Off-isolation = $20\log_{10} (V_{COM} / V_{NO}), V_{COM} = output, V_{NO} = input to off switch.$


Typical Operating Characteristics

 $(V_{CC} = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$

ON-RESISTANCE vs. COM VOLTAGE ON-RESISTANCE vs. COM VOLTAGE ON-RESISTANCE vs. COM VOLTAGE 6 1.2 1.2 $V_{CC} = 5.0V$ $V_{CC} = 3.0V$ 1.0 1.0 5 $V_{CC} = 1.8V$ T_A = +85°0 ON-RESISTANCE (22) ON-RESISTANCE (22) ON-RESISTANCE (22) 4 0.8 0.8 $T_A = +85^{\circ}C$ $T_{A} = +25^{\circ}($ $V_{CC} = 2.0V$ 3 0.6 0.6 $T_A = +25^{\circ}C$ T_A = -40°C V_{CC} = 2.3V 2 0.4 0.4 2.5 $T_A = -40^{\circ}C$ $V_{+} = 3.0V$ V + = 5.0V1 0.2 0.2 0 0 0 -3 -2 -1 0 2 3 0 4 -4 1 4 5 -1 2 3 5 -3 -2 -1 0 1 2 3 1 COM VOLTAGE (V) COM VOLTAGE (V) COM VOLTAGE (V) MAX4762/MAX4764 MAX4763/MAX4765 **TURN-ON/TURN-OFF TIME** SUPPLY CURRENT vs. SUPPLY VOLTAGE SUPPLY CURRENT vs. SUPPLY VOLTAGE vs. SUPPLY VOLTAGE 100 6 70 60 5 80 SUPPLY CURRENT (nA) SUPPLY CURRENT (nA) 50 4 60 ton/tore (ns) 40 ton 3 30 40 toff 2 20 20 1 10 0 0 0 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 1.8 2.3 2.8 3.3 3.8 4.3 5.3 4.8 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) **CHARGE INJECTION** TURN-ON/TURN-OFF TIME vs. TEMPERATURE LOGIC THRESHOLD vs. SUPPLY VOLTAGE vs. Vcom 40 2.0 300 $V_{CC} = 3.0V$ $C_L = 1 n F$ VIN RISING 1.6 200 30 $V_{CC} = 5.0V$ CHARGE INJECTION (pC) LOGIC THRESHOLD (V) ton 1.2 100 tow/torF (ns) $V_{CC} = 2.0V$ 20 VIN FALLING 0.8 0 toFF 10 0.4 -100 0 -200 0 -3 -2 -1 0 2 3 4 5 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 1 -40 -15 10 60 35 85 SUPPLY VOLTAGE (V) V_{COM} (V) TEMPERATURE (°C)

MAX4762-MAX4765

Typical Operating Characteristics (continued)

_Pin Description (MAX4762/MAX4764)

P	IN			
10-µMAX 10-TDFN	12-UCSP	NAME	FUNCTION	
1	B1	V _{CC}	Positive-Supply Voltage Input	
2	A1	NO1	Analog Switch 1—Normally Open Terminal	
3	A2	COM1	Analog Switch 1—Common Terminal	
4	A3	NC1	Analog Switch 1—Normally Closed Terminal	
5	A4	IN1	Digital Control Input for Analog Switch 1. A logic LOW on IN1 connects COM1 to NC1 and a logic HIGH connects COM1 to NO1.	
6	B4	GND	Ground	
7	C4	IN2	Digital Control Input for Analog Switch 2. A logic LOW on IN2 connects COM2 to NC2 and a logic HIGH connects COM2 to NO2.	
8	C3	NC2	Analog Switch 2—Normally Closed Terminal	
9	C2	COM2	Analog Switch 2—Common Terminal	
10	C1	NO2	Analog Switch 2—Normally Open Terminal	
EP (TDFN only)	_	EP	Exposed pad for TDFN package. Connect to GND.	

Pin Description (MAX4763/MAX4765)

Р	PIN			
12-Thin QFN	12-UCSP	NAME	FUNCTION	
1	A2	COM1	Analog Switch 1—Common Terminal	
2	A3	NC1	Analog Switch 1—Normally Closed Terminal	
3	A4	IN1	Digital Control Input for Analog Switch 1. A logic LOW on IN1 connects COM1 to NC1 and a logic HIGH connects COM1 to NO1.	
4	B3	CMP-	Comparator Inverting Input	
5	B4	GND	Ground	
6	C4	IN2	Digital Control Input for Analog Switch 2. A logic LOW on IN2 connects COM2 to NC2 and a logic HIGH connects COM2 to NO2.	
7	C3	NC2	Analog Switch 2—Normally Closed Terminal	
8	C2	COM2	Analog Switch 2—Common Terminal	
9	C1	NO2	Analog Switch 2—Normally Open Terminal	
10	B2	CMPO	Comparator Output	
11	B1	V _{CC}	Positive-Supply Voltage Input	
12	A1	NO1	Analog Switch 1—Normally Open Terminal	
EP	_	EP	Exposed pad. Connect to GND.	

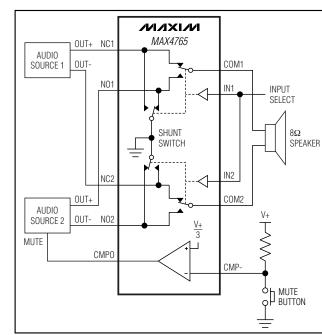


Figure 1. Typical Operating Circuit

MAX4762-MAX4765

Detailed Description

The MAX4762–MAX4765 are low on-resistance, low-voltage, dual SPDT analog switches that operate from a +1.8V to +5.5V supply and are fully specified for nominal 3.0V applications. The devices feature a negative signal capability that allows signals below ground to pass through without distortion and have break-beforemake switching.

The MAX4763/MAX4765 feature a comparator that can be used for headphone or mute detection. The comparator threshold is internally generated to be approximately 1/3 of V_{CC}. The MAX4764/MAX4765 feature an internal shunt switch to discharge any capacitance at the NO and NC connection points. This reduces the click-and-pop sounds that occur when switching audio signals.

Applications Information

Digital Control Inputs

The MAX4762–MAX4765 logic inputs accept up to +5.5V, regardless of supply voltage. For example, with a +3.3V supply, IN_ can be driven low to GND and high to +5.5V allowing for mixing of logic levels in a system. Driving IN_ Rail-to-Rail[®] minimizes power consumption. For a +1.8V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high); for a +5V supply voltage, the logic thresholds are 0.8V (low) and 2.0V (high).

Rail to Rail is a registered trademark of Motorola Nippon Ltd.

Analog Signal Levels

The on-resistance of the MAX4762–MAX4765 changes very little for analog input signals across the entire supply voltage range (see the *Typical Operating Characteristics*). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs.

The MAX4762–MAX4765 pass signals as low as V_{CC} - 5.5V, including signals below ground with minimal distortion.

Comparator (MAX4763/MAX4765)

The MAX4763/MAX4765 include a comparator that can be used for mute and headphone detection functions. The positive terminal of the comparator is internally set to V_{CC} / 3. When the negative terminal (CMP-) is below the threshold, the comparator output (CMPO) is a logic high. When CMP- rises above V_{CC} / 3, CMPO is a logic low.

The comparator threshold of V_{CC} / 3 allows for detection of headphones because headphone audio signals are typically biased to V_{CC} / 2.

Shunt Switch (MAX4764/MAX4765)

The 100Ω shunt switches on the MAX4764/MAX4765 automatically discharge any capacitance at the NC_ or NO_ terminals when they are unconnected to COM_. This reduces audible click-and-pop sounds that occur when switching between audio sources.

Audible clicks and pops are caused when a step DC voltage is switched into the speaker. By automatically discharging the side that is not connected, any residual DC voltage is removed, thereby reducing the clicks and pops.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings since stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} before applying analog signals, especially if the analog signal is not current-limited.

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, printed circuit board techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, go to the Maxim's website at www.maxim-ic.com/ucsp and search for the Application Note, "UCSP—A Wafer-Level Chip-Scale Package."

Test Circuits/Timing Diagrams

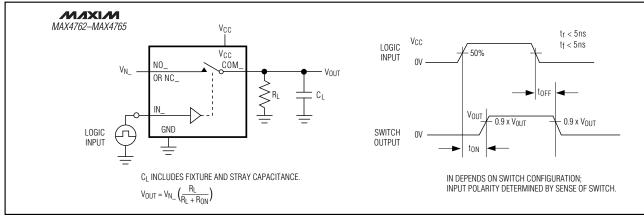
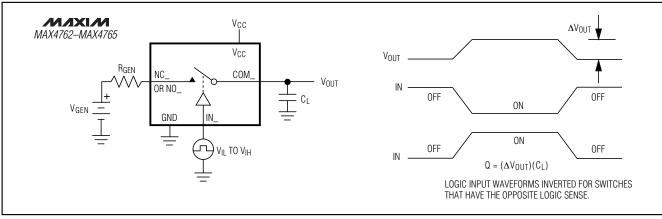
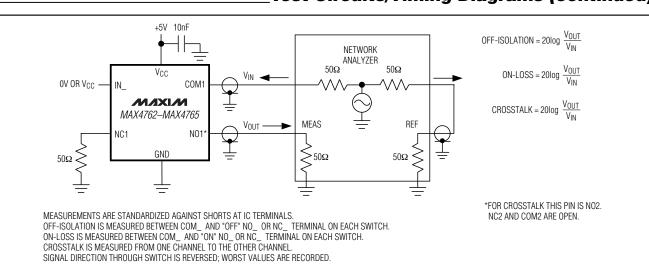


Figure 2. Switching Time

Figure 3. Break-Before-Make Interval




Figure 4. Charge Injection

9

MAX4762-MAX4765

Test Circuits/Timing Diagrams (continued)

Figure 5. On-Loss, Off-Isolation, and Crosstalk

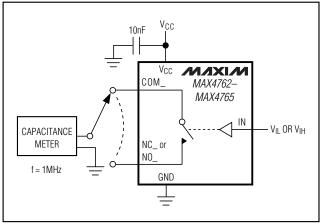
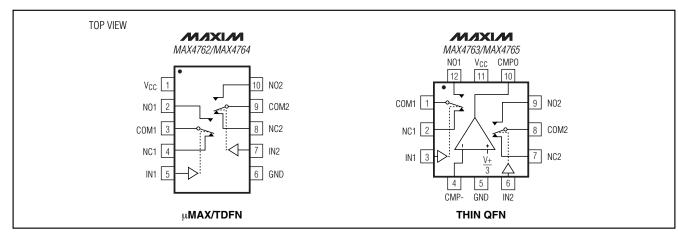



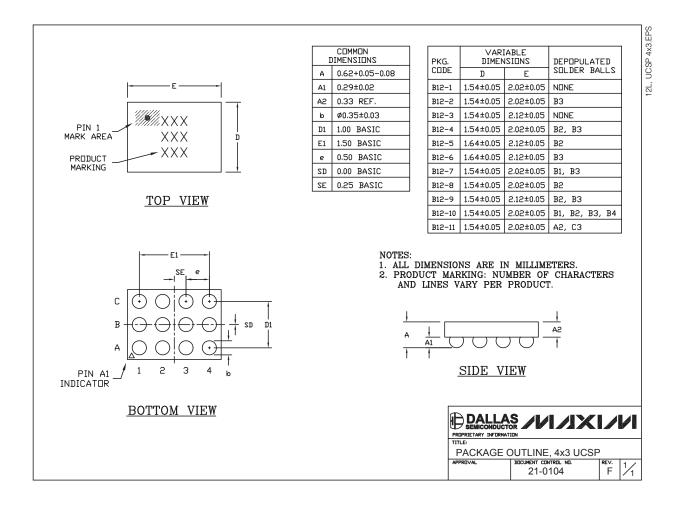
Figure 6. Channel Off/On-Capacitance

Pin Configurations/Functional Diagrams/Truth Table (continued)

_Ordering Information (continued)

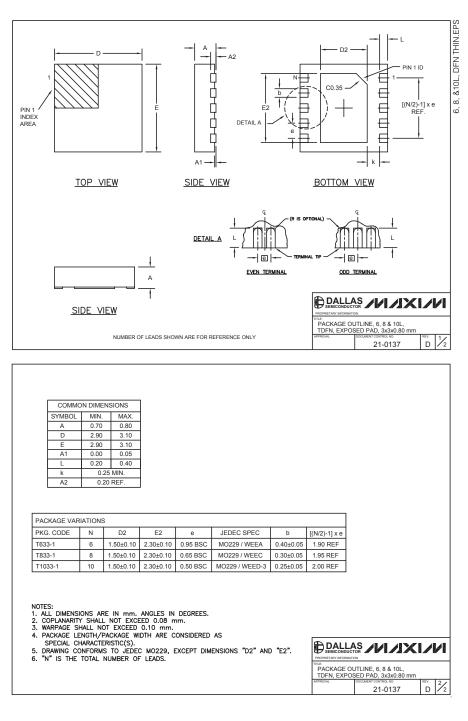
PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4763EBC-T	-40°C to +85°C	12 UCSP-12	ABS
MAX4763ETC	-40°C to +85°C	12 Thin QFN	AAED
MAX4764ETB	-40°C to +85°C	10 TDFN	ACH
MAX4764EUB	-40°C to +85°C	10 µMAX	_
MAX4764EBC-T	-40°C to +85°C	12 UCSP-12	ABV
MAX4765EBC-T	-40°C to +85°C	12 UCSP-12	ABT
MAX4765ETC	-40°C to +85°C	12 Thin QFN	AAEE

Selector Guide


PART	COMPARATOR	SHUNT	PACKAGE SIZE (mm)
MAX4762EBC-T	No	No	1.5 x 2.0
MAX4762ETB	No	No	3.0 x 3.0
MAX4762EUB	No	No	3.0 x 5.0
MAX4763EBC-T	Yes	No	1.5 x 2.0
MAX4763ETC	Yes	No	4.0 x 4.0
MAX4764EBC-T	No	Yes	1.5 x 2.0
MAX4764ETB	No	Yes	3.0 x 3.0
MAX4764EUB	No	Yes	3.0 x 5.0
MAX4765EBC-T	Yes	Yes	1.5 x 2.0
MAX4765ETC	Yes	Yes	4.0 x 4.0

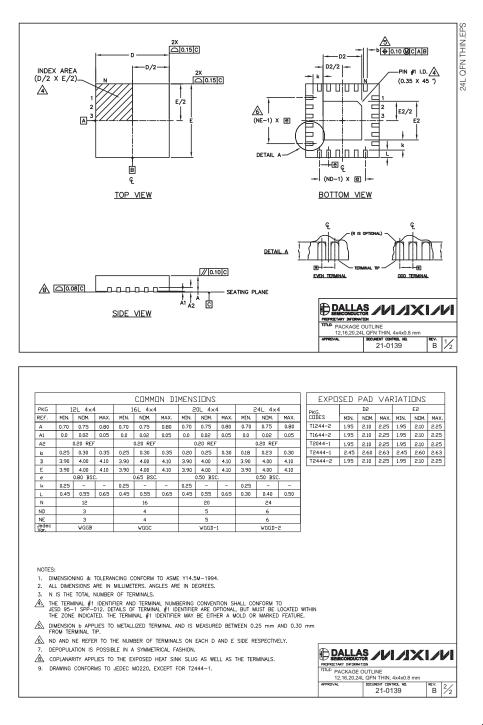
Chip Information

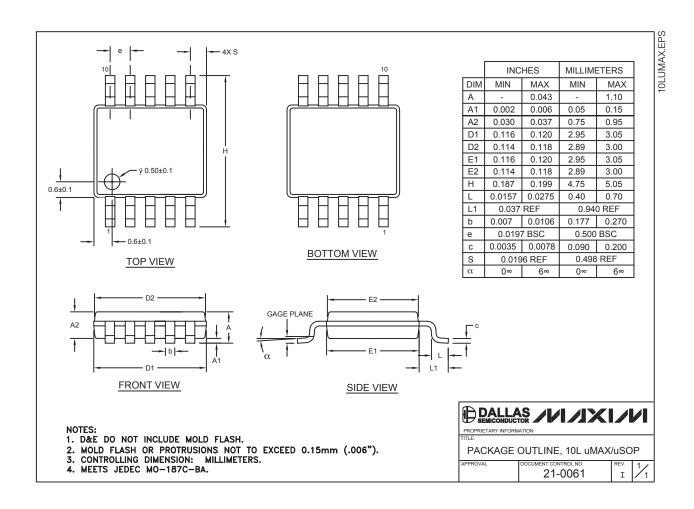
TRANSISTOR COUNT: 769 PROCESS: BICMOS


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)


Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2004 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.

MAX4762-MAX4765

_ 15