

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

4A, 200V Ultrafast Diodes

The RURD420S is an ultrafast diode with soft recovery characteristics (t_{rr} < 30ns). It has low forward voltage drop and has ion-implanted epitaxial planar construction.

This device is intended for use as a freewheeling/clamping diode and rectifier in a variety of switching power supplies and other power switching applications. It's low stored charge and ultrafast soft recovery minimize ringing and electrical noise in many power switching circuits, reducing power loss in the switching transistors.

Formerly developmental type TA49034.

Ordering Information

PART NUMBER	PACKAGE	BRAND
RURD420S	TO-252	RUR420

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-252 variant in tape and reel, i.e., RURD420S9A.

Features

•	Ultrafast with Soft Recovery<30ns
•	Operating Temperature175°C
•	Reverse Voltage

- · Avalanche Energy Rated
- Planar Construction

Applications

- · Switching Power Supplies
- · Power Switching Circuits
- General Purpose

Packaging

JEDEC STYLE TO-252

Symbol

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

	RURD420S	UNITS
Peak Repetitive Reverse VoltageV _{RRM}	200	V
Working Peak Reverse Voltage	200	V
DC Blocking Voltage	200	V
Average Rectified Forward Current	4	Α
$(T_C = 159^{\circ}C)$		
Repetitive Peak Surge CurrentIFRM	8	Α
(Square Wave, 20kHz)		
Nonrepetitive Peak Surge Current	40	Α
(Halfwave, 1 Phase, 60Hz)		
Maximum Power Dissipation	30	W
Avalanche Energy (See Figures 9 and 10)	10	mJ
Operating and Storage Temperature	-65 to 175	°C
Maximum Lead Temperature for Soldering		
(Leads at 0.063 in. (1.6mm) from case for 10s)	300	°C
Package Body for 10s, see Tech Brief 334	260	οС

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
V _F	I _F = 4A	-	-	1.0	V
	$I_F = 4A, T_C = 150^{\circ}C$	-	-	0.83	V

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
I _R	V _R = 200V	-	-	100	μΑ
	$V_R = 200V, T_C = 150^{\circ}C$	-	-	500	μΑ
t _{rr}	$I_F = 1A$, $dI_F/dt = 100A/\mu s$	-	-	30	ns
	$I_F = 4A$, $dI_F/dt = 100A/\mu s$	-	-	35	ns
t _a	$I_F = 4A$, $dI_F/dt = 100A/\mu s$	-	11	-	ns
t _b	$I_F = 4A$, $dI_F/dt = 100A/\mu s$	-	9	-	ns
Q _{RR}	$I_F = 4A$, $dI_F/dt = 100A/\mu s$	-	12	-	nC
СЛ	V _R = 10V, I _F = 0A	-	15	-	pF
$R_{ heta JC}$		-	-	5	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

I_R = Instantaneous reverse current.

 t_{rr} = Reverse recovery time (See Figure 8), summation of $t_a + t_b$.

 t_a = Time to reach peak reverse current (See Figure 8).

t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 8).

Q_{RR} = Reverse recovery charge.

 C_J = Junction capacitance.

 $R_{\theta JC}$ = Thermal resistance junction to case.

pw = pulse width.

D = duty cycle.

Typical Performance Curves

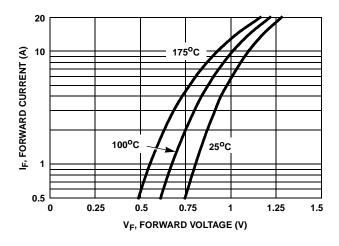


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

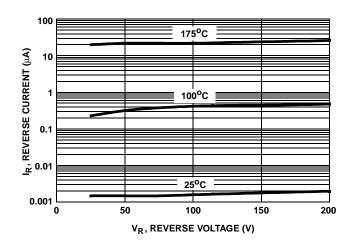


FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

50

40

30

20

10

0

0.5

t, RECOVERY TIMES (ns)

 $T_C = 100^{\circ}C$, $dI_F/dt = 100A/\mu s$

Typical Performance Curves (Continued)

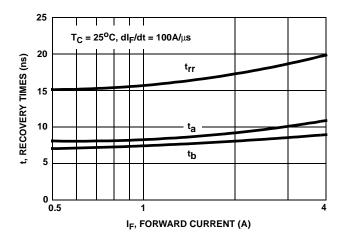


FIGURE 3. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT

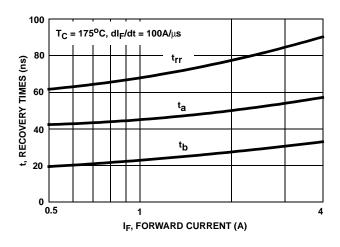


FIGURE 5. t_{rr} , t_a and t_b curves vs forward current

FIGURE 6. CURRENT DERATING CURVE

Test Circuits and Waveforms

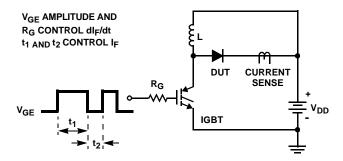


FIGURE 7. t_{rr} TEST CIRCUIT

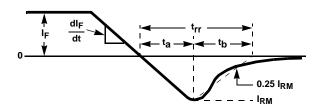


FIGURE 8. $t_{\rm rr}$ WAVEFORMS AND DEFINITIONS

FIGURE 4. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT

trr

ta

tb

I_F, FORWARD CURRENT (A)

Test Circuits and Waveforms (Continued)

I = 1A L = 20mH $R < 0.1\Omega$ $E_{AVL} = 1/2LI^{2} [V_{R(AVL)}/(V_{R(AVL)} - V_{DD})]$ $Q_{1} = IGBT (BV_{CES} > DUT V_{R(AVL)})$ L CURRENT + 0 $SENSE V_{DD}$ V_{DD} DUT - 0

FIGURE 9. AVALANCHE ENERGY TEST CIRCUIT

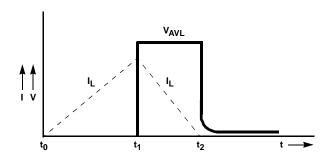


FIGURE 10. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FACT Quiet Series™	ISOPLANAR™	POP™	SuperFET™
ActiveArray™	FAST®	LittleFET™	Power247™	SuperSOT™-3
Bottomless™	FASTr™	MICROCOUPLER™	PowerTrench®	SuperSOT™-6
CoolFET™	FPS™	MicroFET™	QFET®	SuperSOT™-8
CROSSVOLT™	FRFET™	MicroPak™	QS^{TM}	SyncFET™
DOME™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics™	TinyLogic [®]
EcoSPARK™	GTO™ .	MSX TM	Quiet Series™	TINYOPTO™
E ² CMOS™	HiSeC™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	I ² C TM	OCX^{TM}	RapidConnect™	UHC™
FACT™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	UltraFET®
Across the board	d. Around the world.™	OPTOLOGIC®	SMART START™	VCX TM
The Power Franchise™		OPTOPLANAR™	SPM TM	
Programmable Active Droop™		PACMAN™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative