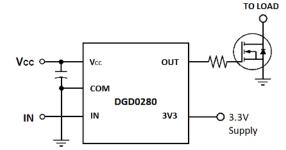


DGD0280

LOW SIDE SINGLE GATE DRIVER WITH LDO


Description

The DIODES[™] DGD0280 low-side MOSFET and IGBT driver is capable of driving 2.8A of peak current. The DGD0280 logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) to interface easily with MCUs. Internal undervoltage lockout (UVLO) protects the MOSFET with loss of supply by turning off the output when VCC falls below operating range. Fast and well matched propagation delays allow high-speed operation, enabling a smaller, more compact power-switching design using smaller associated components.

The DGD0280 has an integrated LDO that outputs 3.3V at $\pm 1\%$ tolerance with the ability to supply 15mA. The DGD0280 provides a non-inverted output. The DGD0280 comes in a space-saving TSOT25 package and operates over an extended -40°C to +125°C temperature range.

Applications

- DC-DC converters
- Line drivers
- Motor controls
- Switch mode power supplies

Typical Configuration

Ordering Information (Note 4)

Part Number	Packago	Marking Code	Marking Code Reel Size (Inches)		Reel Size (Inches) Tape Width (mm)		Marking Code Pool Size (Inches) Tone Width (mm) Pa		Pac	king
Fait Nulliber	Package	Marking Code Reel Size (Inches)		Tape width (mm)	Qty.	Carrier				
DGD0280WT-7	TSOT25	D0280	7	8	3000	Reel				

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

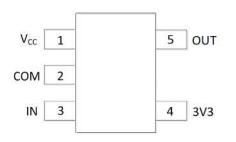
Marking Information

 $\begin{array}{l} \text{D0280} = \text{Product Type Marking Code (See Table Above)} \\ \text{YY} = \text{Year (ex: } 23 = 2023) \\ \text{WW or WW} - = \text{Week (01 to 53)} \end{array}$

Features

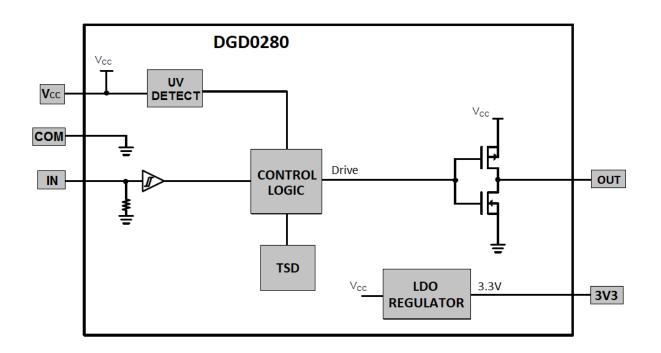
- Efficient Low Cost Solution for Driving MOSFETs and IGBTs
- Integrated LDO (3.3V, 15mA Output)
- 3.3V LDO at 1% Accuracy at +25°C
- Wide Supply Voltage Operating Range: 4.5V to 18V
- 2.5A Source / 2.8A Sink Output Current Capability
- Undervoltage Lockout for V_{CC} Supply
- Fast Propagation Delay (35ns Typ)
- Fast Rise and Fall Times (20ns Typ)
- Logic Input (IN) 3.3V Capability
- Extended Temperature Range: -40°C to +125°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative. <u>https://www.diodes.com/quality/product-definitions/</u>

Mechanical Data


- Package: TSOT25
- Package Material: Molded Plastic. "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 3 per J-STD-020
- Terminals: Finish—Matte Tin Plated Leads. Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.016 grams (Approximate)

TSOT25

Pin Diagrams



Pin Descriptions

	-	
Pin Number	Pin Name	Function
1	Vcc	Supply Input
2	COM	Supply Return
3	IN	Logic Input, In Phase with OUT
4	3V3	LDO Regulator 3.3V Ouput
5	OUT	Gate Drive Output

Functional Block Diagram

Absolute Maximum Ratings (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Low-Side Fixed Supply Voltage	Vcc	-0.3 to +22	V
Output Voltage (OUT)	Vout	-0.3 to Vcc+0.3	V
Logic Input Voltage (IN)	VIN	-5 to Vcc+0.3	V

Thermal Characteristics (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation Linear Derating Factor (Note 5)	PD	0.89	W
Thermal Resistance, Junction to Ambient (Note 5)	Reja	117	°C/W
Thermal Resistance, Junction to Case (Note 5)	Rejc	12.5	°C/W
Operating Temperature	TJ	+150	
Lead Temperature (Soldering, 10s)	TL	+300	°C
Storage Temperature Range	Tstg	-55 to +150	

Note: 5. When mounted on a standard JEDEC 2-layer FR-4 board with minimum recommended pad layout.

ESD Ratings (Note 6)

Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge – Human Body Model	ESD HBM	2000	V	2
Electrostatic Discharge – Charged Device Model	ESD CDM	1000	V	IV

Note: 6. Refer to JEDEC specification JESD22-A114 and JESD22-C101.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	4.5	18	V
Output Voltage (OUT)	Vout	0	Vcc	V
Logic Input Voltage (IN)	VIN	0	5	V
Ambient Temperature	TA	-40	+125	°C

DC Electrical Characteristics (V_{CC} = 12V, @T_A = +25°C, unless otherwise specified.) (Note 7)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Logic "1" Input Voltage	ViH	2.0			V	—
Logic "0" Input Voltage	VIL	_	—	0.8	V	—
Input Hysteresis	VIN_HYS	_	0.5		V	—
Logic "1" Input Bias Current	I _{IN+}	—	7.5	20	μΑ	VIN = 3V
Logic "0" Input Bias Current	I _{IN-}	_	—	1	μΑ	$V_{IN} = 0V$
Quiescent Vcc Supply Current	lccq	_	—	250	μΑ	Inputs Open
		—	1.5			fs = 100kHz, CL = 1000pF
Operating V _{CC} Supply Current	Icco	—	12.5		mA	$fs = 1MHz, C_L = 1000pF$
Vcc Supply Undervoltage Positive Going Threshold	VCCUV+	4.5	4.75	5.0	V	—
Vcc Supply Undervoltage Negative Going Threshold	Vccuv-	4.2	4.5	4.8	V	—
Output High Short-Circuit Pulsed Current	Io+	—	2.5		Α	Vo = 0V, PW ≤ 10µs
Output Low Short-Circuit Pulsed Current	lo-	—	2.8		Α	V _O = 15V, PW ≤ 10µs
LDO Output Voltage	VLDO	3.267	3.3	3.333	V	Iout = 10mA
LDO Line Regulation	VLDO_LINE	_	21	38	mV	V _{CC} = 5V to 18V, I _{OUT} = 10mA
LDO Load Regulation	VLDO_LOAD	_	_	10	mV	$V_{CC} = 12V$, $I_{OUT} = 0.1$ mA to 10mA
Maximum LDO Current	ILDO_MAX		15		mA	$R_L = 220\Omega$
LDO Current Limit	Ildo_lim	20	68	_	mA	$R_L = 0\Omega$
Thermal Shutdown Turn-On	T _{SD(ON)}	_	+150		°C	—
Thermal Shutdown Turn-Off	TSD(OFF)	—	+125		°C	—

Note: 7. The V_{IN} and I_{IN} parameters are applicable to the logic input pin: IN. The V₀ and I₀ parameters are applicable to the output pin: OUT.

AC Electrical Characteristics (V_{CC} = 12V, @T_A = +25°C, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Turn-On Rise Time	tr	—	20	35	ns	C _L = 1000pF
Turn-Off Fall Time	tr	—	15	35	ns	CL = 1000pF
Turn-On Propagation Delay	ton	20	35	50	ns	—
Turn-Off Propagation Delay	toff	15	30	50	ns	—

Timing Waveforms

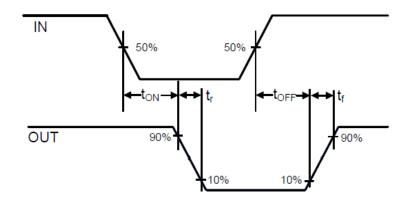


Figure 1. Switching Time Waveform Definitions

Typical Performance Characteristics (V_{CC} = 12V, @T_A = +25°C, unless otherwise specified.)

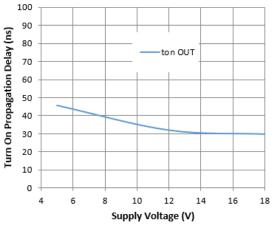


Figure 2. Turn-on Propagation Delay vs. Supply Voltage

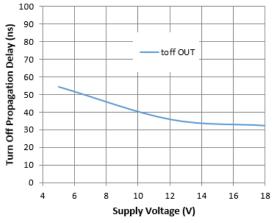
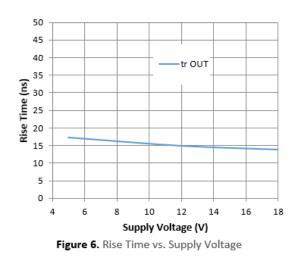



Figure 4. Turn-off Propagation Delay vs. Supply Voltage

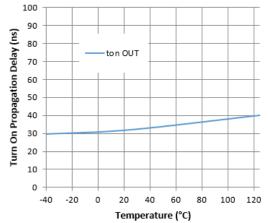
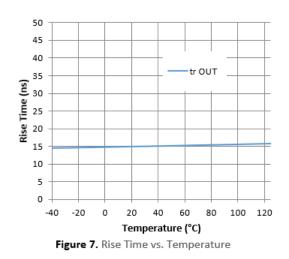



Figure 3. Turn-on Propagation Delay vs. Temperature

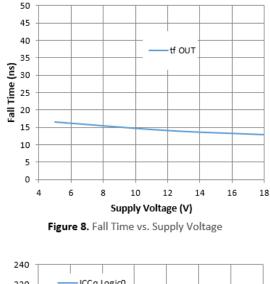


Figure 5. Turn-off Propagation Delay vs. Temperature

Typical Performance Characteristics (continued)

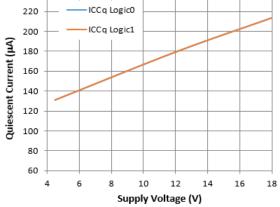


Figure 10. Quiescent Current vs. Supply Voltage

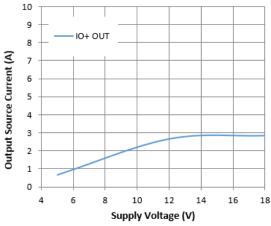
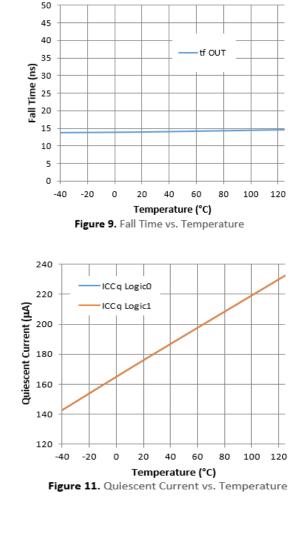



Figure 12. Output Source Current vs. Supply Voltage

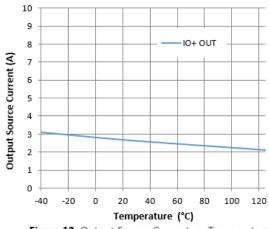


Figure 13. Output Source Current vs. Temperature

Typical Performance Characteristics (continued)

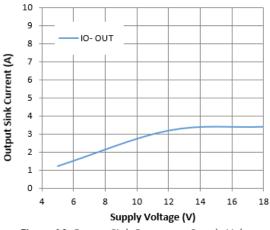
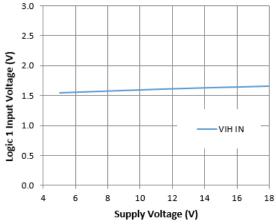
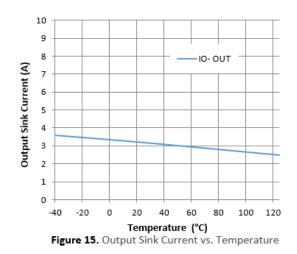
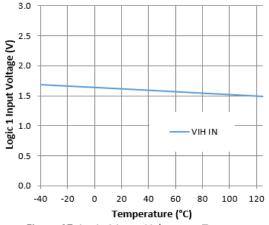


Figure 14. Output Sink Current vs. Supply Voltage

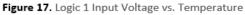

Figure 16. Logic 1 Input Voltage vs. Supply Voltage

Figure 18. Logic 0 Input Voltage vs. Supply Voltage

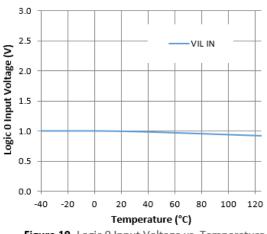
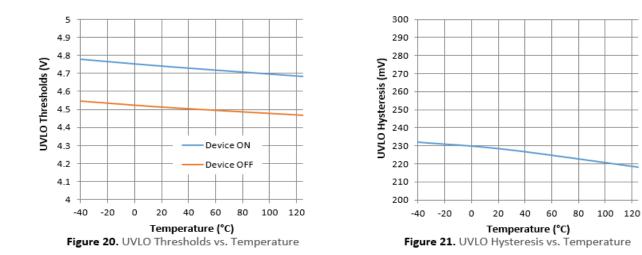
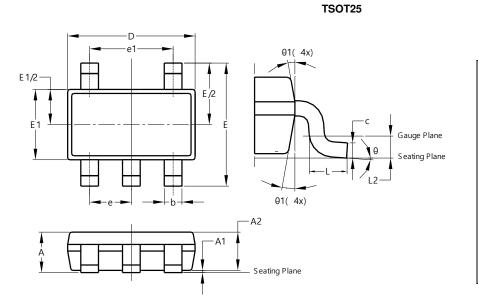
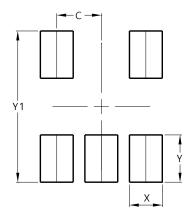



Figure 19. Logic 0 Input Voltage vs. Temperature


Typical Performance Characteristics (continued)

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.



TSOT25						
Dim	Min Max Ty					
Α	_	1.00	—			
A1	0.01	0.10	_			
A2	0.84	0.90	_			
b	0.30	0.45	_			
c	0.12	0.20	_			
D		_	2.90			
E	_	_	2.80			
E1	_	_	1.60			
е	(0.95 BSC				
e1		1.90 BS	0			
_	0.30	0.50	_			
L2	(0.25 BS(C			
θ	0°	8°	4°			
θ1	4°	12°	_			
All C	Dimens	ions in	mm			

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

TSOT25

Dimensions	Value (in mm)
С	0.950
Х	0.700
Y	1.000
Y1	3.199

DGD0280 Document number: DS41282 Rev. 3 - 2

IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5 provided Diodes' Standard Terms and Conditions of Sale Diodes' products are subject to (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. DIODES is a trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2023 Diodes Incorporated. All Rights Reserved.

www.diodes.com