

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

74AC540 Octal Buffer/Line Driver with 3-STATE Outputs

FAIRCHILD

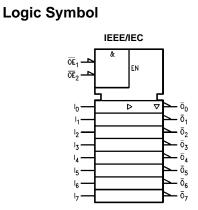
SEMICONDUCTOR

74AC540 Octal Buffer/Line Driver with 3-STATE Outputs

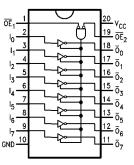
General Description

The AC540 is an octal buffer/line drivers designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers.

These devices are similar in function to the AC240 while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes these devices especially useful as output ports for microprocessors, allowing ease of layout and greater PC board density.


Features

- I_{CC} and I_{OZ} reduced by 50%
- 3-STATE inverting outputs
- Inputs and outputs opposite side of package, allowing easier interface to microprocessors
- Output source/sink 24 mA


Ordering Code:

Order Number	Package Number	Package Description			
74AC540SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide			
74AC540SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74AC540MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
74AC540PC N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide					
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.					

Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Truth Table

	Outputs		
OE ₁	OE ₂	I	
L	L	Н	L
Н	Х	Х	Z
Х	Н	Х	Z
L	L	L	н
H = HIGH Vo L = LOW Vol	0		material gh Impedance

FACT[™] is a trademark of Fairchild Semiconductor Corporation.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate ($\Delta V / \Delta t$)	125 mV/ns
V_{IN} from 30% to 70% of V_{CC}	
V _{CC} @ 3.3V, 4.5V, 5.5V	

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/nput loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	$T_A = +25$ °C		$T_A = -40^\circ \text{ C to } +85^\circ \text{C}$	Units	Conditions
Symbol	Minimum HIGH Level	(V) 3.0	Typ Gu		aranteed Limits	Units	Conditions
VIH			1.5	1.5 2.1 2.1	2.1		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V
		5.5	2.75	3.85	3.85		
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V
		5.5	2.75	1.65	1.65		
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		2.56	2.46		I _{OH} = -12 mA
		4.5		3.86	3.76	V	I _{OH} = -24 mA
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$
(Note 4)	Leakage Current						
I _{OZ}	Maximum 3-STATE						V_{I} (OE) = V_{IL} , V_{IH}
	Current	5.5		±0.25	±2.5	μA	$V_I = V_{CC}, GND$
							$V_O = V_{CC}, GND$
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$
(Note 4)	Supply Current						or GND

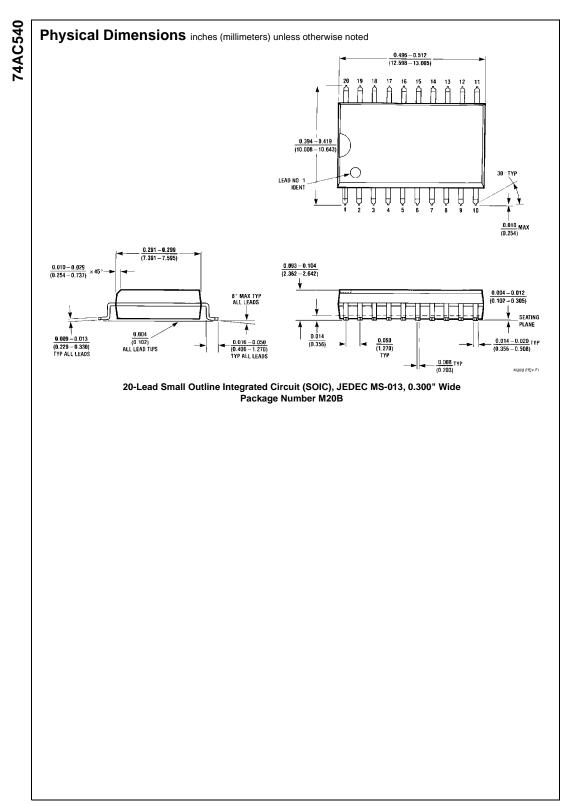
Note 2: All outputs loaded; thresholds on input associated with output under test.

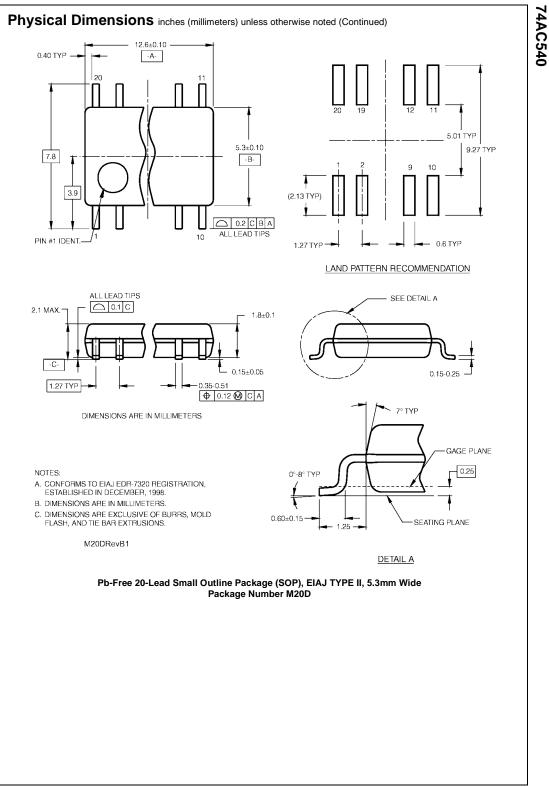
Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

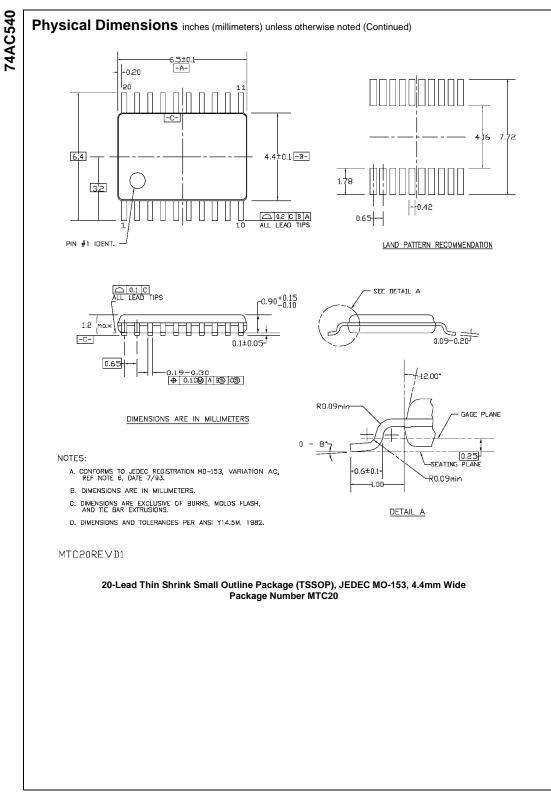
AC Electrical Characteristics

		V _{cc}	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Units
Symbol	Parameter	(V)						
		(Note 5)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	1.5	5.5	7.5	1.0	8.0	ns
	Data to Output	5.0	1.5	4.0	6.0	1.0	6.5	115
t _{PHL}	Propagation Delay	3.3	1.5	5.0	7.0	1.0	7.5	ns
	Data to Output	5.0	1.5	4.0	5.5	1.0	6.0	115
t _{PZH}	Output Enable Time	3.3	3.0	8.5	11.0	2.5	12.0	ns
		5.0	2.0	6.5	8.5	2.0	9.5	115
t _{PZL}	Output Enable Time	3.3	2.5	7.5	10.0	2.0	11.0	ns
		5.0	2.0	6.0	7.5	1.5	8.5	115
t _{PHZ}	Output Disable Time	3.3	2.5	8.5	13.0	1.5	14.0	ns
		5.0	1.5	7.5	10.5	1.0	11.0	115
t _{PLZ}	Output Disable Time	3.3	2.5	7.0	10.0	2.0	11.0	
		5.0	1.5	6.0	8.0	1.5	9.0	ns

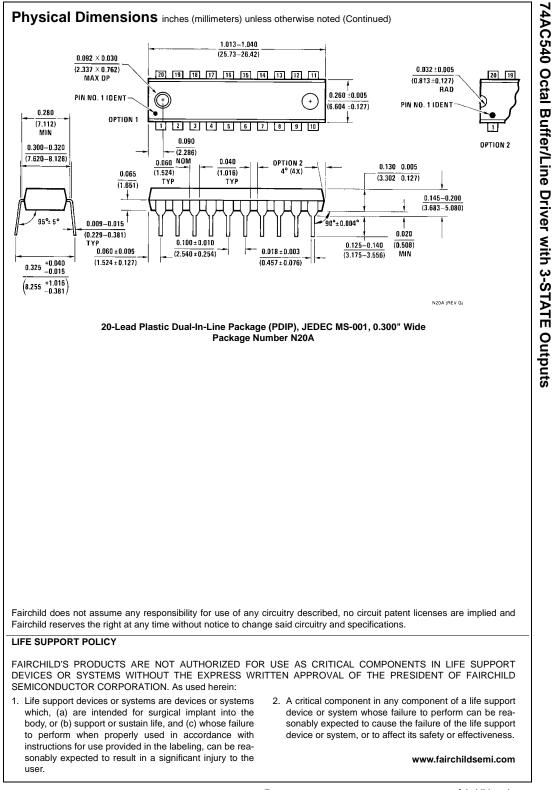

Note 5: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is $5.0V \pm 0.5V$


Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	30.0	pF	$V_{CC} = 5.0V$


74AC540

www.fairchildsemi.com



www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC