
BOURNS®

- Sensitive Gate Triacs
- 2.5 A RMS
- Glass Passivated Wafer
- 400 V to 700 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrant 1)

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING		SYMBOL	VALUE	UNIT
	TIC201D		400	
Repetitive peak off-state voltage (see Note 1)	TIC201M	VDRM	600	V
	TIC201S		700	
Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note	2)	IT(RMS)	2.5	А
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature	(see Note 3)	I _{TSM}	12	А
Peak gate current		I _{GM}	±0.2	А
Peak gate power dissipation at (or below) 85°C case temperature (pulse width s	200 μs)	P _{GM}	1.3	W
Average gate power dissipation at (or below) 85°C case temperature (see Note	+)	P _{G(AV)}	0.3	W
Operating case temperature range		т _с	-40 to +110	°C
Storage temperature range		T _{stg}	-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds		ΤL	230	°C

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 100 mA/°C.

This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge
may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.

4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TEST CONDIT	TIONS	MIN	ТҮР	МАХ	UNIT
I _{DRM}	Repetitive peak off-state current	$V_D = rated V_{DRM}$	$I_{G} = 0$	T _C = 110°C			±1	mA
I _{GT}	Gate trigger current	$V_{supply} = +12 V t$ $V_{supply} = +12 V t$ $V_{supply} = -12 V t$ $V_{supply} = -12 V t$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	t _{p(g)} > 20 μs t _{p(g)} > 20 μs t _{p(g)} > 20 μs t _{p(g)} > 20 μs			5 -8 -10 25	mA

† All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER		TEST CONDITIO	NS	MIN	ТҮР	MAX	UNIT
		V _{supply} = +12 V†	R _L = 10 Ω	t _{p(g)} > 20 μs		0.7	2.5	
V	Gate trigger	$V_{supply} = +12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.7	-2.5	v
V _{GT}	voltage	$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.7	-2.5	v
		$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.7		
V _T	On-state voltage	I _T = ±3.5 A	l _G = 50 mA	(see Note 5)			±1.9	V
	Holding current	V _{supply} = +12 V†	I _G = 0	Init' I _{TM} = 100 mA			30	mA
Ч	riolaling current	$V_{supply} = -12 V^{\dagger}$	$I_{G} = 0$	Init' I _{TM} = - 100 mA			-30	IIIA
I,	Latching current	V _{supply} = +12 V†	(see Note 6)				40	mA
'L	Eatening current	$V_{supply} = -12 V^{\dagger}$					-40	ША
dv/dt	Critical rate of rise of	V _{DBM} = Rated V _{DBM}	1. = 0	T _C = 110°C		±20		V/µs
uv/ut	off-state voltage	VDRM - Mated VDRM	I _G = 0	1 _C = 110 C		120		v/µs
dv/dt	Critical rise of	V _{DBM} = Rated V _{DBM}	L _ +3.5 A	T _C = 85°C	±1	±4		V/µs
dv/dt _(c)	commutation voltage	VDRM – Maleu VDRM	TRM - ±3.5 A	1C - 03 C	11	<u>-</u> 24		v/µs

† All voltages are with respect to Main Terminal 1.

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

6. The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: R_{G} = 100 $\Omega,$ $t_{p(g)}$ = 20 $\mu s,$ t_{r} = \leq 15 ns, f = 1 kHz.

thermal characteristics

	PARAMETER	MIN	TYP	MAX	UNI
$R_{ extsf{ heta}JC}$	Junction to case thermal resistance			10	°C/V
$R_{ hetaJA}$	Junction to free air thermal resistance			62.5	°C/V

