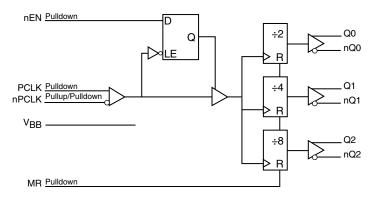


LOW SKEW, ÷2, ÷4, ÷8 DIFFERENTIAL-TO-LVPECL CLOCK DIVIDER

ICS873034

General Description


The ICS873034 is a high-speed, differential-to-LVPECL clock divider designed for highperformance telecommunication, computing and networking applications. High clock frequency capability and the differential design make the

ICS873034 an ideal choice for performance clock distribution networks. The device frequency-divides the input clock by \div 2, \div 4 and \div 8. Each frequency-divided clock signal is output at a separate LVPECL output. The differential input pair can be driven by LVPECL, LVDS, CML and SSTL signals, single-ended input signals are supported by using the integrated bias voltage generator (V_{BB}). The ICS873034 is optimized for 3.3V and 2.5V power supply voltages and the temperature range of -40 to +85°C. The device is available in space-saving 16-lead TSSOP and SOIC packages.

Features

- ÷2, ÷4 and ÷8 clock frequency divider
- Three differential LVPECL output pairs
- One differential PCLK/nPCLK input pair
- PCLK/nPCLK pair can accept the following differential input levels: LVPECL, LVDS, CML, SSTL
- V_{BB} bias voltage generator supports single-ended LVPECL clock input signals
- LVCMOS control inputs
- Maximum input frequency: 2.8GHz
- Translates any single-ended input signal to 3.3V LVPECL levels with bias resistor on nPCLK input
- LVPECL mode operating voltage supply range: $V_{CC} = 2.375V$ to 3.8V, $V_{EE} = 0V$
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Block Diagram

Pin Assignment

Q0	1	16	Vcc					
nQ0	2	15	nEN					
Vcc	3	14	nc					
Q1	4	13	D PCLK					
nQ1	5	12	nPCLK					
Vcc□	6	11	🗆 Vвв					
Q2	7	10	□MR					
nQ2	8	9	VEE					
ICS873034								

16-Lead SOIC, 300 Mil 7.5mm x 10.3mm x 2.3mm package body M Package Top View

16-Lead TSSOP 4.4mm x 5.0mm x 0.925mm package body G Package Top View

Number	Name	T	уре	Description
1, 2	nQ0, Q0	Output		Differential output pair. LVPECL interface levels.
3, 6, 16	V _{CC}	Power		Power supply pins.
4, 5	Q1, nQ1	Output		Differential output pair. LVPECL interface levels.
7, 8	Q2, nQ2	Output		Differential output pair. LVPECL interface levels.
9	V _{EE}	Power		Negative supply pin.
10	MR	Input	Pulldown	Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS/LVTTL interface levels.
11	V _{BB}	Output		Bias voltage.
12	nPCLK	Input	Pullup/ Pulldown	Inverting differential clock input. Defaults to 0.66 * V_{CC} when left open. LVPECL interface levels.
13	PCLK	Input	Pulldown	Non-inverting differential clock input. LVPECL interface levels.
14	nc	Unused		No connect.
15	nEN	Input	Pulldown	Synchronizing clock enable. When LOW, clock outputs follow clock input. When HIGH, Qx outputs are forced LOW, nQx outputs are forced HIGH. LVTTL / LVCMOS interface levels.

Table 1. Pin Descriptions

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
R _{PULLDOWN}	Input Pulldown Resistor			75		kΩ
R _{PULLUP}	Input Pullup Resistor			37.5		kΩ

Function Table

Table 3. Truth Table

PCLK	nEN	MR	Function
\downarrow	L	L	Divide
1	Н	L	Hold Q[0:2]
Х	Х	Н	Reset Q[0:2]

 \uparrow = Rising edge transition

 \downarrow = Falling edge transition

X = Don't care

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	6V (LVPECL mode, V _{EE} = 0V)
Inputs, V _I (LVPECL mode)	-0.5V to V _{CC} + 0.5V
Outputs, I _O Continuos Current Surge Current	50mA 100mA
V _{BB} Sink/Source, I _{BB}	±0.5mA
Operating Temperature Range, T _A	-40°C to +85°C
Package Thermal Impedance, θ _{JA} 16 Lead SOIC, Junction-to-Ambient 16 Lead TSSOP, Junction-to-Ambient	82°C/W (0 mps) 103°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, V_{CC} = 2.375V to 3.8V; V_{EE} = 0V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Positive Supply Voltage		2.375	3.3	3.8	V
I _{EE}	Power Supply Current				52	mA

			-40°C				25°C			80°C		
Symbol	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
V _{OH}	Output H Voltage;		V _{CC} -1.145	V _{CC} -1.020	V _{CC} -0.895	V _{CC} -1.145	V _{CC} -1.020	V _{CC} -0.895	V _{CC} -1.145	V _{CC} -1.020	V _{CC} -0.895	V
V _{OL}	Output L Voltage;		V _{CC} -1.945	V _{CC} -1.700	V _{CC} -1.600	V _{CC} -1.945	V _{CC} -1.700	V _{CC} -1.600	V _{CC} -1.945	V _{CC} -1.700	V _{CC} -1.600	V
V _{IH}	Input High (Single-er		0.7V _{CC}		V _{CC} + 0.3	0.7V _{CC}		V _{CC} + 0.3	0.7V _{CC}		V _{CC} + 0.3	V
V _{IL}	Input Low (Single-er		-0.3		0.3V _{CC}	-0.3		0.3V _{CC}	-0.3		0.3V _{CC}	v
V _{BB}	Output Vo Reference		V _{CC} - 1.44		V _{CC} - 1.32	V _{CC} - 1.44		V _{CC} - 1.32	V _{CC} - 1.44		V _{CC} - 1.32	v
V _{PP}	Peak-to- Voltage;	Peak Input NOTE 2	0.15	800		0.15	800		0.15	800		v
V _{CMR}	Commor	h Voltage Mode NOTE 2, 3	1.2		V _{CC}	1.2		V _{CC}	1.2		V _{CC}	v
I _{IH}	Input High Current	PCLK/ nPCLK, MR, nEN			150			150			150	μA
IIL	Input Low	PCLK, MR, nEN	-10			-10			-10			μA
	Current	nPCLK	-150			-150			-150			μA

Table 4B. DC Characteristics, $V_{CC} = 2.375V$ to 3.8V, $V_{EE} = 0V$; $T_A = -40^{\circ}C$ to $85^{\circ}C$

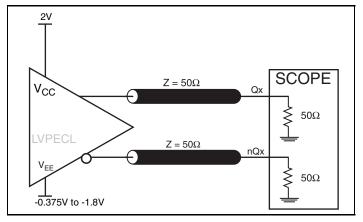
Input and output parameters vary 1:1 with V_{CC}. NOTE 1: Outputs terminated with 50 Ω to V_{CC} – 2V.

NOTE 2: V_{IL} cannot be less than -0.3V. NOTE 3: Common mode voltage is defined as V_{IH} .

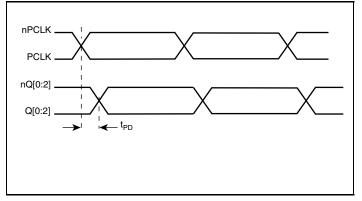
AC Electrical Characteristics

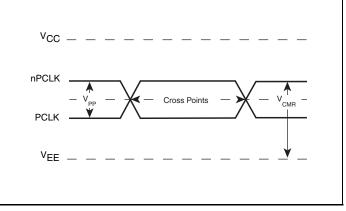
	Parameter		-40°C		25°C		80°C					
Symbol			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
f _{MAX}	Output Frequen	су	2.8			2.8			2.8			GHz
t _{PD}	Propagation Del	ay; NOTE 1	410	510	610	440	540	640	480	580	680	ps
tsk(o)	Output Skew; N	OTE 2			50			50			50	ps
t _{RR}	Set/Reset Reco	very		320	500		320	500		320	500	ps
t _S	Setup Time	nEN			400			400			400	ps
t _H	Hold Time	nEN			200			200			200	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	105	170	240	110	180	245	120	200	255	ps
odc	Output Duty Cyc	le	48		52	48		52	48		52	%

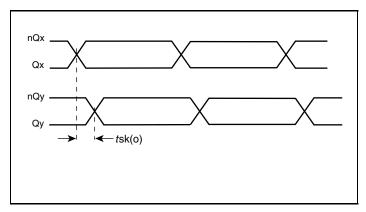
Table 5. AC Characteristics, V_{CC} = 2.375V to 3.8V, V_{EE} = 0V; T_A = -40°C to 85°C


NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. Device will meet specifications after thermal equilibrium has been reached under these conditions

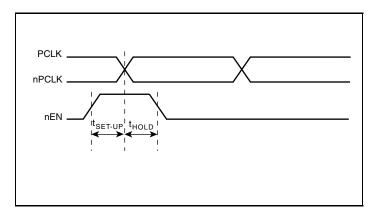
All parameters are measured at $f \le 2.5$ GHz, unless otherwise noted.


NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

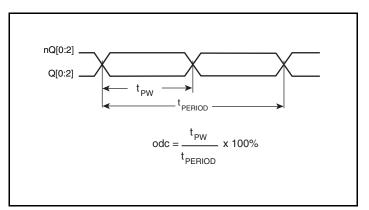

NOTE 2: Output skew at coincident rising edges.



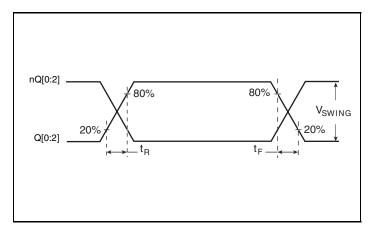
LVPECL Output Load AC Test Circuit



Differential Input Level



Propagation Delay


Setup and Hold Time

Output Skew

Parameter Measurement Information, continued

Output Rise/Fall Time

Application Information

Recommendations for Unused Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A 1k Ω resistor can be used.

Outputs:

LVPECL Outputs

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Wiring the Differential Input to Accept Single-ended LVCMOS Levels

Figure 1A shows an example of the differential input that can be wired to accept single-ended LVCMOS levels. The reference voltage level V_{BB} generated from the device is connected to the

negative input. The C1 capacitor should be located as close as possible to the input pin.

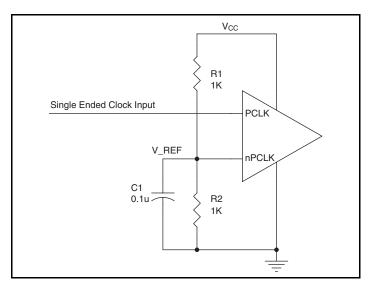


Figure 1A. Single-Ended LVCMOS Signal Driving Differential Input

Wiring the Differential Input to Accept Single-ended LVPECL Levels

Figure 1B shows an example of the differential input that can be wired to accept single-ended LVPECL levels. The reference voltage level V_{BB} generated from the device is connected to the

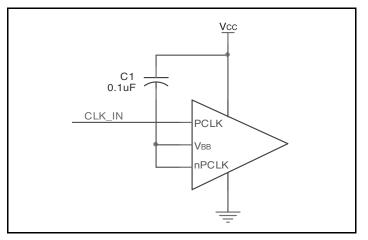


Figure 1B. Single-Ended LVPECL Signal Driving Differential Input

negative input. The C1 capacitor should be located as close as possible to the input pin.

LVPECL Clock Input Interface

The PCLK/nPCLK accepts LVPECL, LVDS, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2F* show interface examples for the HiPerClockS PCLK/nPCLK input driven by the

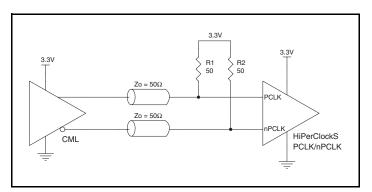


Figure 2A. HiPerClockS PCLK/nPCLK Input Driven by an Open Collector CML Driver

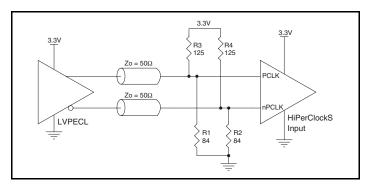


Figure 2C. HiPerClockS PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver

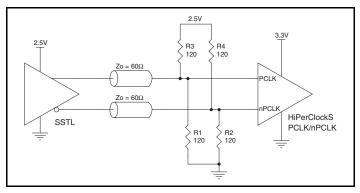


Figure 2E. HiPerClockS PCLK/nPCLK Input Driven by an SSTL Driver

most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

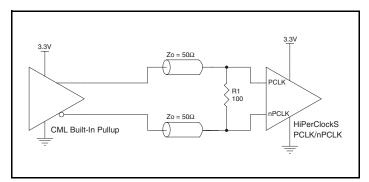


Figure 2B. HiPerClockS PCLK/nPCLK Input Driven by a Built-In Pullup CML Driver

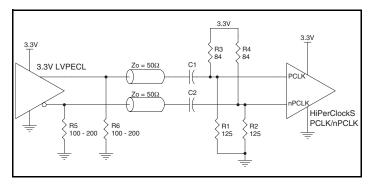


Figure 2D. HiPerClockS PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver with AC Couple

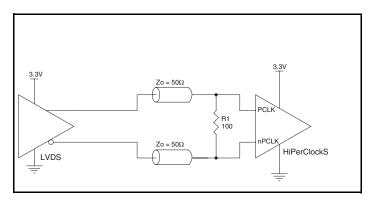


Figure 2F. HiPerClockS PCLK/nPCLK Input Driven by a 3.3V LVDS Driver

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

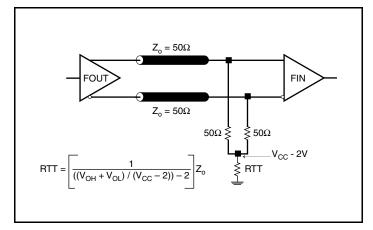


Figure 3A. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

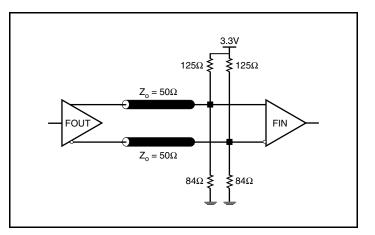


Figure 3B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 4A and Figure 4B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50 Ω to V_{CC} – 2V. For V_{CC} = 2.5V, the V_{CC} – 2V is very close to

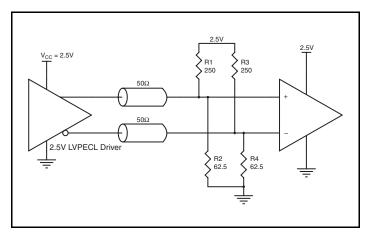


Figure 4A. 2.5V LVPECL Driver Termination Example

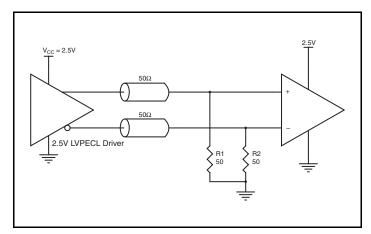


Figure 4C. 2.5V LVPECL Driver Termination Example

ground level. The R3 in Figure 4B can be eliminated and the termination is shown in *Figure 4C*.

Figure 4B. 2.5V LVPECL Driver Termination Example

Application Schematic Example

Figure 5 shows an example of ICS873034 application schematic. In this example, the device is operated at V_{CC} = 3.3V. The decoupling capacitor should be located as close as possible to the power pin. The input is driven by a 3.3V LVPECL driver. For the

LVPECL output drivers, only two terminations examples are shown in this schematic. More termination approaches are shown in the LVPECL Termination Application Note.

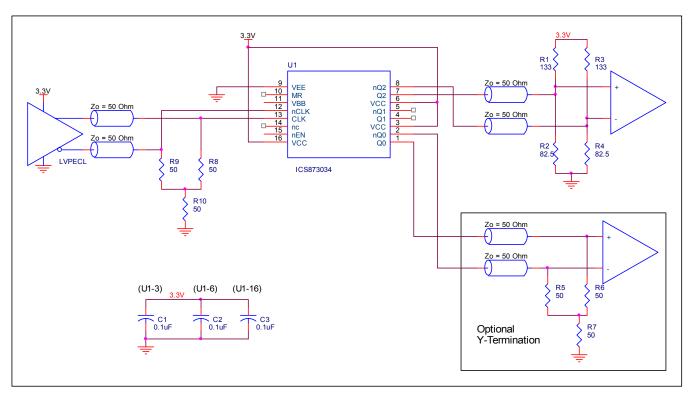


Figure 5. ICS873034 Application Schematic Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS873034. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS873034 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.8V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.8V * 52mA = **197.6mW**
- Power (outputs)_{MAX} = 32.58mW/Loaded Output pair If all outputs are loaded, the total power is 3 * 32.58mW =97.74mW

Total Power_MAX (3.8V, with all outputs switching) = 197.6mW + 97.74mW = 295.34mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 103°C/W per Table 6B below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.295W * 103^{\circ}C/W = 115.4^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6A. Thermal Resistance θ_{JA} for 16 Lead SOIC Forced Convection

θ _{JA} by Velocity								
Meters per Second	0	1	2.5					
Multi-Layer PCB, JEDEC Standard Test Boards	82.0°C/W	75.6°C/W	72.0°C/W					

Table 6B. Thermal Resistance θ_{JA} for 16 Lead TSSOP Forced Convection

θ _{JA} by Velocity								
Meters per Second	0	1	2.5					
Multi-Layer PCB, JEDEC Standard Test Boards	103.0°C/W	97.6°C/W	93.8°C/W					

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in *Figure 6*.

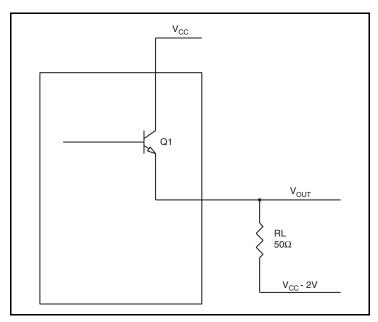


Figure 6. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50 Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.895V$ ($V_{CC_MAX} - V_{OH_MAX}$) = 0.895V
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.6V$ ($V_{CC_MAX} - V_{OL_MAX}$) = 1.6V

Pd_H is power dissipation when the output drives high.

 $\ensuremath{\mathsf{Pd}_L}$ is the power dissipation when the output drives low.

 $\mathsf{Pd}_{\mathsf{H}} = [(\mathsf{V}_{\mathsf{OH}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - 0.895\mathsf{V})/50\Omega] * 0.895\mathsf{V} = 19.78\mathsf{mW}$

 $\mathsf{Pd}_{L} = [(\mathsf{V}_{\mathsf{OL}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - 1.6\mathsf{V})/50\Omega] * 1.6\mathsf{V} = \mathbf{12.8mW}$

Total Power Dissipation per output pair = Pd_H + Pd_L = **32.58mW**

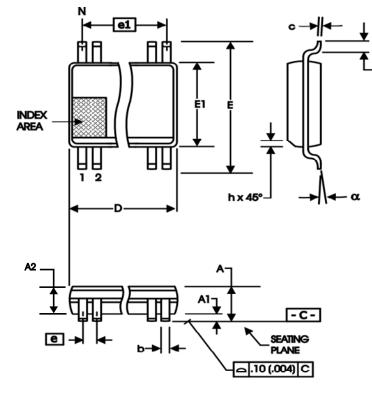
Reliability Information

Table 7A. θ_{JA} vs. Air Flow Table for an 16 Lead SOIC

θ_{JA} vs. Air Flow								
Meters per Second	0	1	2.5					
Multi-Layer PCB, JEDEC Standard Test Boards	82.0°C/W	75.6°C/W	72.0°C/W					

Table 7B. θ_{JA} vs. Air Flow Table for an 16 Lead TSSOP Forced Convection

θ _{JA} by Velocity								
Meters per Second	0	1	2.5					
Multi-Layer PCB, JEDEC Standard Test Boards	103.0°C/W	97.6°C/W	93.8°C/W					


Transistor Count

The transistor count for ICS873034 is: 280 Pin compatible with MC100LVEP34

Package Outlines and Package Dimensions

Package Outline - G Suffix for 16 Lead TSSOP

Package Outline - M Suffix for 16 Lead SOIC

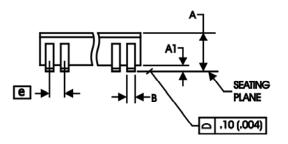


Table 8A. Package Dimensions

All Dimensions in Millimeters					
Symbol	Minimum Maximum				
N	16				
Α		1.20			
A1	0.05	0.15			
A2	0.80	1.05			
b	0.19	0.30			
С	0.09	0.20			
D	4.90	5.10			
E	6.40 Basic				
E1	4.30	4.50			
е	0.65 Basic				
L	0.45	0.75			
α	0°	8 °			
aaa		0.10			

Reference Document: JEDEC Publication 95, MO-153

NDEX AREA 1 2 D $h \times 45^{\circ} \rightarrow 4$

Table 8B. Package Dimensions

All Dimensions in Millimeters					
Symbol	Minimum Maximum				
Ν	16				
Α		2.65			
A1	0.10				
A2	2.05	2.55			
В	0.33	0.51			
С	0.18	0.32			
D	10.10	10.50			
E	7.40	7.60			
е	1.27 Basic				
Н	10.0	10.65			
h	0.25	0.75			
L	0.40	1.27			
α	0°	8 °			

Reference Document: JEDEC Publication 95, MS-013, MS-119

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
873034AM	873034AM	16 Lead SOIC	Tube	-40°C to 85°C
873034AMT	873034AM	16 Lead SOIC	1000 Tape & Reel	-40°C to 85°C
873034AMLF	873034AMLF	"Lead-Free" 16 Lead SOIC	Tube	-40°C to 85°C
873034AMLFT	873034AMLF	"Lead-Free" 16 Lead SOIC	1000 Tape & Reel	-40°C to 85°C
873034AG	873034AG	16 Lead TSSOP	Tube	-40°C to 85°C
873034AGT	873034AG	16 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C
873034AGLF	873034AGL	"Lead-Free" 16 Lead TSSOP	Tube	-40°C to 85°C
873034AGFT	873034AGL	"Lead-Free" 16 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Contact Information:

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com +480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800-345-7015 (inside USA) +408-284-8200 (outside USA)

© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA