FAIRCHILD

SEMICONDUCTOR

DM81LS95A • DM81LS96A • DM81LS97A 3-STATE Octal Buffer

General Description

These devices provide eight, two-input buffers in each package. All employ low-power-Schottky TTL technology. One of the two inputs to each buffer is used as a control line to gate the output into the high-impedance state, while the other input passes the data through the buffer. The DM81LS95A and DM81LS97A present true data at the outputs, while the DM81LS96A versions, all eight 3-STATE enable lines are common, with access through a 2-input NOR gate. On the DM81LS97A version, four buffers are enabled from one common line, and the other four buffers are laced in the 3-STATE condition by applying a high logic level to the enable pins.

Features

- Typical power dissipation
 DM81LS95A, DM81LS97A
 B0 mW
 DM81LS96A
 65 mW
- Typical propagation delay DM81LS95A, DM81LS97A 15 ns DM81LS96A 10 ns

September 1991

Revised May 1999

■ Low power-Schottky, 3-STATE technology

Ordering Code:

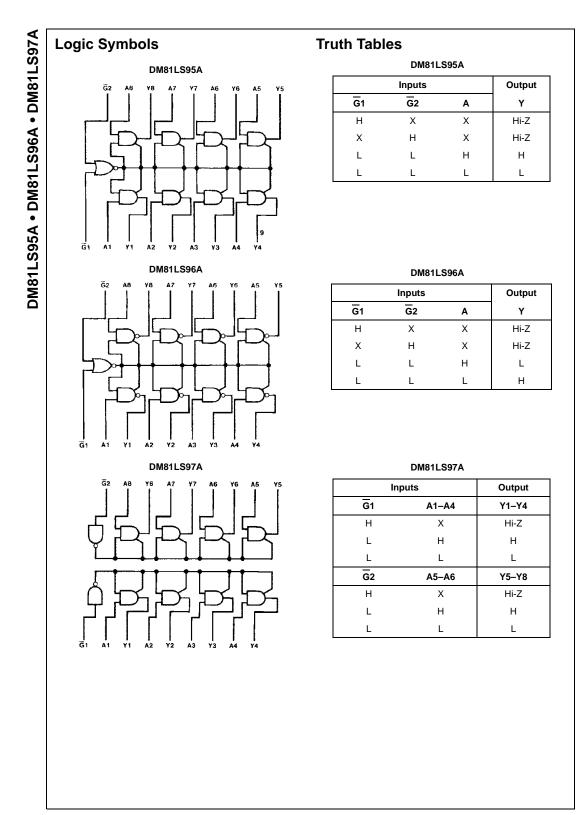
Order Number	Package Number	Package Description
DM81LS95AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM81LS95AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM81LS96AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM81LS96AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM81LS97AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

<u>G</u> 1 —	1	20	-v _{cc}
A1 —	2	19	— <u>G</u> 2
Y1 —	3	18	— A8
A2 —	4	17	- Y8
Y2 —	5	16	— A7
A3 🗕	6	15	- Y7
Y3 —	7	14	— A6
A4 —	8	13	— Y6
Y4 —	9	12	— A5
GND -	10	11	- Y5
ļ			

Pin Descriptions


DM81LS95A and DM92LS96A

Pin Names	Descriptions
A1–A8	Inputs
Y1–Y8	Outputs
<u>G</u> 1– <u>G</u> 2	Active LOW Output Enables (Note 1)

Note 1: Both G1 and G2 must be LOW for outputs to be enabled.

DM81LS97A

Pin Names	Descriptions
A1–A8	Inputs
Y1–Y8	Outputs
G1	Active LOW Output Enable (Y1-Y4)
G2	Active LOW Output Enable (Y5-Y8)

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 2)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^\circ C$ to $+150^\circ C$

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The Recommended Operating Conditions table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
'cc	Supply Voltage	4.75	5	5.25	V
′ін	HIGH Level Input Voltage	2			V
/ _{IL}	LOW Level Input Voltage			0.8	V
ОН	HIGH Level Output Current			-5.2	mA
OL	LOW Level Output Current			24	mA
Γ _A	Free Air Operating Temperature	0		70	°C

Symbol	Parameter		Condition	IS	Min	Typ (Note 3)	Max	Unit
VI	Input Clamp Voltage	V _{CC} = Min, I	_I = –18 mA				-1.5	V
V _{OH}	HIGH Level Output Voltage	V _{CC} = Min, I V _{IL} = Max, V	011		2.7			V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $I_{OL} = Max, V_{IH} = Min$ $I_{OI} = 12 \text{ mA}, V_{CC} = Min$				0.5	v	
h	Input Current @ Max Input Voltage	$V_{CC} = Max,$					0.4	mA
I _{IH}	HIGH Level Input Current	V _{CC} = Max,	$V_{1} = 2.7V$				20	μA
IIL	LOW Level Input Current	$V_{CC} = Max$		A (Note 4)			-20	
			$V_I = 0.4V$	A (Note 5)			-50 -50	μΑ
I _{OZH}	Off-State Output Current with HIGH Level Output Voltage Applied	V _{CC} = Max, ⁷ V _{IH} = Min, V	-				20	μΑ
I _{OZL}	Off-State Output Current with LOW Level Output Voltage Applied	V _{CC} = Max, ⁷ V _{IH} = Min, V	-				-20	μA
l _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 6)			-20		-100	mA
Icc	Supply Current	V _{CC} = Max (Note 4)		1	16	26	mA

ICCSupply CurrentNote 3: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 4: Both \overline{G} inputs are at 2V.

Note 5: Both \overline{G} inputs are at 0.4V.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

AC Electrical Characteristics DM81LS95A and DM81LS97A

 $V_{CC} = 5V, T_A = 25^{\circ}C$

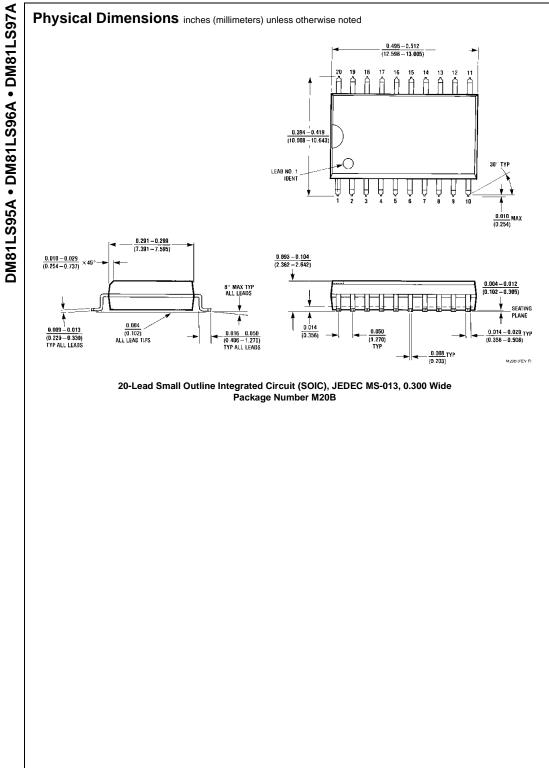
			$R_L = 667 \ \Omega$				
Symbol	Parameter	C _L =	C _L = 50 pF		C _L = 150 pF		
		Min	Max	Min	Max	1	
t _{PLH}	Propagation Delay Time		16		25	ns	
	LOW-to-HIGH Level Output		10		25	115	
t _{PHL}	Propagation Delay Time		28		40	ns	
	HIGH-to-LOW Level Output		20		40	115	
t _{PZH}	Output Enable Time		25		30	ns	
	to HIGH Level Output		25		50	113	
t _{PZL}	Output Enable Time		20	30	42	ns	
	to LOW Level Output		30			115	
t _{PHZ}	Output Disable Time		20			ns	
	from HIGH Level Output (Note 7)		20			113	
t _{PLZ}	Output Disable Time		27			ns	
	from LOW Level Output (Note 7)		21			115	
Note 7: CL	= 5 pF.			•	•		

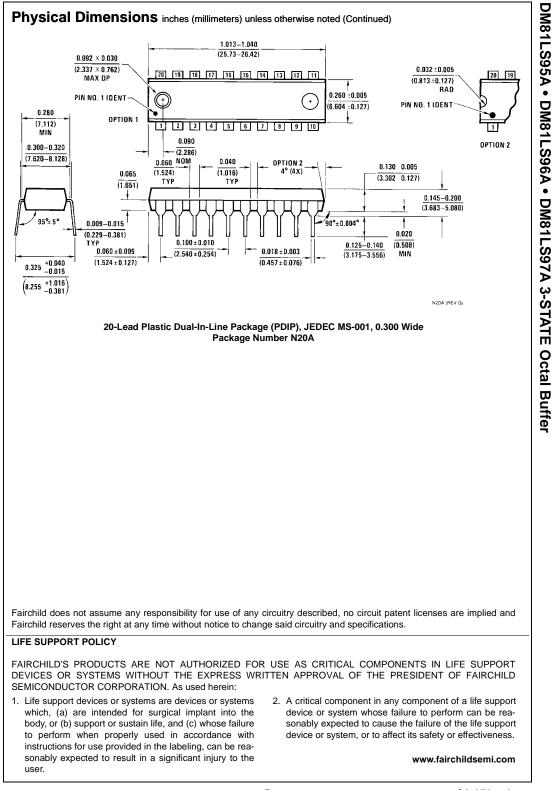
Symbol	Parameter	Conditions		Min	Typ (Note 8)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I$	=-18 mA				-1.5	V
V _{ОН}	HIGH Level Output Voltage	$V_{CC} = Min, I_{C}$	511		2.7			V
		V _{IL} = Max, V						
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{C}$	-				0.5	
			$I_{OL} = Max, V_{IH} = Min$					V
		I _{OL} = 12 mA,	88				0.4	
I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA	
IIH	HIGH Level Input Current	V _{CC} = Max, V	/ _I = 2.7V				20	μA
IIL	LOW Level Input Current	V _{CC} = Max	$V_I = 0.5V$	A (Note 9)			-20	
			$V_{I} = 0.4V$	A (Note 10)			-50	μA
				G			-50	· ·
I _{OZH}	Off-State Output Current	V _{CC} = Max, V	V _O = 2.4V					
	with HIGH Level Output	$V_{IH} = Min, V_I$	_L = Max				20	μA
	Voltage Applied							
I _{OZL}	Off-State Output Current	V _{CC} = Max, V	V _O = 0.4V		1			1
	with LOW Level Output	$V_{IH} = Min, V_I$	L = Max				-20	μΑ
	Voltage Applied							
l _{os}	Short Circuit	$V_{CC} = Max$			-20		-100	mA
	Output Current	(Note 11)			-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (I	Note 10)			13	21	mA

Note 8: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 9: Both \overline{G} inputs are at 2V.

Note 10: Both \overline{G} inputs are at 0.4V.


Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.


AC Electrical Characteristics DM81LS96A • •

Symbol		Paramete	ər	
V _{CC} = 5V, 7	T _A = 25°C			

			$R_L = 667 \ \Omega$				
Symbol	Parameter	C _L =	50 pF	C _L = 150 pF		Units	
		Min	Max	Min	Max		
t _{PLH}	Propagation Delay Time		10		16	ns	
	LOW-to-HIGH Level Output		10		10	115	
t _{PHL}	Propagation Delay Time		17		30	ns	
	HIGH-to-LOW Level Output		17		30	115	
t _{PZH}	Output Enable Time		15		30	ns	
	to HIGH Level Output		15		30	115	
t _{PZL}	Output Enable Time		35		45	ns	
	to LOW Level Output				45	115	
t _{PHZ}	Output Disable Time		20			ns	
	from HIGH Level Output (Note 12)		20			115	
t _{PLZ}	Output Disable Time		27			ns	
	from LOW Level Output (Note 12)		21			115	
Note 12: C	= 5 pF.	•				•	

Note 12: C_L = 5 pF.

