

Symbol

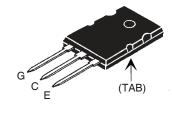
Advance Technical Information


GenX3[™] 1200V IGBTs

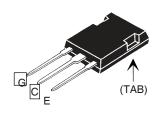
IXGK120N120B3 IXGX120N120B3

$$V_{CES} = 1200V$$

 $I_{C90} = 120A$
 $V_{CE(sat)} \le 3.0V$


High Speed Low Vsat PT IGBTs for 3-20 kHz Switching

Test Conditions



Maximum Ratings

TO-264 (IXGK)

PLUS 247[™] (IXGX)

G = Gate E = EmitterC = Collector TAB = Collector

Features

- Optimized for Low Conduction and Switching Losses
- Square RBSOA
- International Standard Packages

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

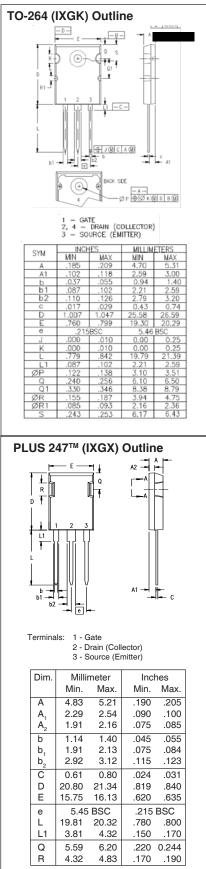
- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

Symbol		waximum nating5			
V _{ces}	$T_{J} = 25^{\circ}C$ to $150^{\circ}C$	1200	V		
V _{CGR}	$T_{_J}$ = 25°C to 150°C, $R_{_{GE}}$ = 1M Ω	1200	V		
V _{ges}	Continuous	±20	V		
V _{gem}	Transient	±30	V		
I	$T_{c} = 25^{\circ}C$ (Chip Capability)	200	A		
I _{C90}	$T_{c} = 90^{\circ}C$	120	A		
I _{LRMS}	Terminal Current Limit	120	A		
I _{CM}	$T_c = 25^{\circ}C$, 1ms	370	A		
SSOA	$V_{ge} = 15V, T_{vj} = 125^{\circ}C, R_{g} = 2\Omega$	I _{CM} = 240	A		
(RBSOA)	Clamped Inductive Load	$V_{\text{CES}} \le 1200$	V		
P _c	$T_c = 25^{\circ}C$	830	W		
Tj		-55 +150	°C		
T _{JM}		150	°C		
T _{stg}		-55 +150	°C		
T	Maximum Lead Temperature for Soldering	300	°C		
	1.6 mm (0.062 in.) from Case for 10	260	°C		
M _d	Mounting Torque (IXGK)	1.13/10	Nm/lb.in.		
F _c	Mounting Force (IXGX)	20120/4.527	N/lb.		
Weight	TO-264	10	g		
	PLUS247	6	g		

Symbol	Symbol Test Conditions Charac					
$(T_{J} = 25^{\circ}C, 1)$	Unless Otherwise Specified)	Min.	Тур.	Max.		
BV _{CES}	$I_{c} = 250 \mu A, V_{ce} = 0V$	1200		V		
V _{GE(th)}	I_{c} = 1mA, $V_{ce} = V_{ge}$	3.0		5.0 V		
I _{CES}	$V_{CE} = V_{CES} V_{GE} = 0V$			50 µA		
	·	$T_J = 125^{\circ}C$		5 mA		
I _{ges}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±400 nA		
V _{CE(sat)}	$I_{c} = 100A, V_{ge} = 15V, Note$	e 1	2.4	3.0 V		

	XYS					
Symbol (T _J = 25°C	Test Conditions , Unless Otherwise Specified)	Char Min.	naracteristic Values n. Typ. Max.			
9 _{fs}	$I_{c} = 60A, V_{ce} = 10V, Note 1$	40	70	S		
C _{ies})			9700	pF		
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1 MHz$		670	pF		
C _{res}			255	pF		
Q _{g(on)}			470	nC		
Q _{ge} }	$I_{c} = I_{c90}, V_{ge} = 15V, V_{ce} = 0.5 \bullet V_{ces}$		67	nC		
Q _{gc})			190	nC		
t _{d(on)}			36	ns		
t _{ri}	Inductive load, $T_J = 25^{\circ}C$		88	ns		
E _{on}	$I_{c} = 100A, V_{ge} = 15V$		5.5	mJ		
t _{d(off)}	$V_{ce} = 600V, R_{g} = 2\Omega$		275	ns		
t _{fi}	Note 2		145	ns		
E _{off} /			5.8	mJ		
t _{d(on)}			34	ns		
t _{ri}	Inductive load, T _J = 125°C		88	ns		
E _{on}	$I_{c} = 100A, V_{GE} = 15V$		6.1	mJ		
t _{d(off)}	$V_{ce} = 600V, R_{g} = 2\Omega$		315	ns		
t _{fi}	Note 2		570	ns		
E /			10.3	ml		

IXGK120N120B3 IXGX120N120B3


mJ

°C/W

0.15 °C/W

10.3

0.15

Note

 $\mathbf{E}_{_{\mathrm{off}}}$

R_{thJC}

R_{thCK}

- 1. Pulse Test, t \leq 300µs, Duty Cycle, d \leq 2%.
- 2. Switching Times may Increase for V_{ce} (Clamp) > 0.8 V_{ces} , Higher T_j or Increased R_g .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the	Bight to C	hange Limits.	Test Conditions	and Dimensions.
1/10/1000/000 010	i light to o	nungo Ennio,		, and Dimonolono.

IXYS MOSFETs and IGBTs are covered	4 995 500	4 021 044	E 040 061	5.237.481	6 160 665	6.404.065 B1	6 602 244	6 707 595	7.005.734 B2	7 157 00000
INTS MOSPETS and IGDTS are covered	4,035,592	4,931,044	5,049,901	5,237,401	0,102,005	0,404,005 DT	0,003,344	0,727,505	7,005,754 BZ	1,107,0002
by one or more of the following U.S. patents	: 4,850,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	2 7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.