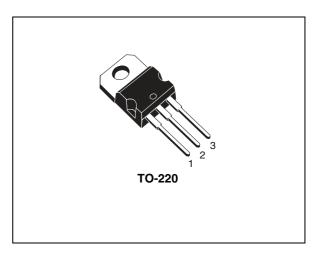


STP130NH02L

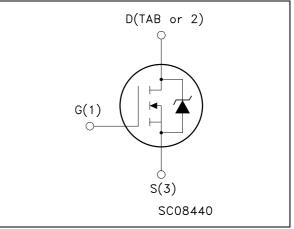
N-channel 24V - 0.0034Ω - 120A - TO-220 STripFET™ Power MOSFET for DC-DC conversion

Features

Туре	V _{DSS}	R _{DS(on)}	۱ _D
STP130NH02L	24V	<0.0044Ω	90 ⁽¹⁾


- 1. Value limited by wire bonding
- R_{DS(on)} *Qg industry's benchmark Low
- Conduction losses reduced
- Switching losses reduced
- Low Threshold device

Description


These devices utilizes the latest advanced design rules of ST's proprietary STripFET[™] technology. It is ideal in high performance DC-DC converter applications where efficiency is to be achieved at very high output currents.

Application

Switching application

Internal schematic diagram

Order code

Part number	Marking	Package	Packaging
STP130NH02L	P130NH02L	TO-220	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuit	8
4	Package mechanical data	9
5	Appendix A	1
6	Revision history1	3

1

Electrical ratings

Table 1.

Symbol	Parameter	Value	Unit
V _{spike} ⁽¹⁾)	Drain-source voltage rating	30	V
V _{DS}	Drain-source voltage ($V_{GS} = 0$)	24	V
V _{DGR}	Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)	24	V
V _{GS}	Gate- source voltage	± 20	V
I _D ⁽²⁾	Drain current (continuous) at $T_C = 25^{\circ}C$	90	A
I _D ⁽²⁾	Drain current (continuous) at $T_C = 100^{\circ}C$	90	А
I _{DM} ⁽³⁾	Drain current (pulsed)	360	А
P _{tot}	Total dissipation at $T_C = 25^{\circ}C$	150	W
	Derating factor	1	W/°C
$E_{AS}^{(4)}$	Single pulse avalanche energy	900	mJ
T _{stg}	Storage temperature -55 to 175		°C
Tj	Max. operating junction temperature		U

1. Guaranteed when external Rg=4.7 Ω and t_{f} < t_{fmax}

2. Value limited by wire bonding

3. Pulse width limited by safe operating area

4. Starting $T_J = 25^{\circ}C$, $I_D = 45A$, $V_{DD} = 10V$

Table 2. Thermal d	lata
--------------------	------

Rthj-case	Thermal resistance junction-case max	1.0	°C/W
Rthj-amb	Thermal resistance junction-ambient max	62.5	°C/W
Τ _Ι	Maximum lead temperature for soldering purpose	300	°C

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 25mA V _{GS} = 0	24			V
I _{DSS}	Zero gate voltage drain current ($V_{GS} = 0$)	V_{DS} = Max rating, V_{DS} = Max rating, T_{C} =125°C			1 10	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1			V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10V$, $I_D = 45A$ $V_{GS} = 5V$, $I_D = 22.5A$		0.0034 0.005	0.0044 0.008	Ω Ω

Table 3. On/off states

Table 4. Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 10V, I _D = 45A		55		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 15V, f = 1MHz, V _{GS} = 0		4450 1126 141		pF pF pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Off voltage rise time Fall time	$V_{DD} = 10V, I_D = 45A,$ $R_G = 4.7\Omega, V_{GS} = 10V$ (see <i>Figure 13</i>)		14 224 69 40		ns ns ns ns
Rg	Gate input resistance	f = 1MHz gate DC bias=0 test signal level=20mV open drain		1.6		Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =10V, I_D = 90A V_{GS} =10V (see <i>Figure 14</i>)		69 13 9	93	nC nC nC
Q _{oss} ⁽²⁾	Output charge	$V_{DS} = 16V, V_{GS} = 0$		27		ns
Q _{gls} ⁽³⁾	Third-quadrant gate charge	V _{DS} < 0, V _{GS} = 10V		64		ns

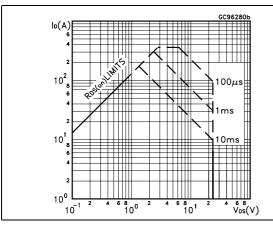
1. Pulsed: pulse duration = $300\mu s$, duty cycle 1.5%

2. Qoss = Coss* ΔV_{IN} , Coss = Cgd + Cds. See power losses calculation

3. Gate charge for synchronous operation.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain current Source-drain current (pulsed)				90 360	A A
V _{SD} ⁽¹⁾	Forward on voltage	$I_{SD} = 45A, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 90A, di/dt = 100A/μs, V _{DD} = 15V, T _J =150°C		47 58 2.5		ns nC A

 Table 5.
 Source drain diode


1. Pulsed: pulse duration = $300\mu s$, duty cycle 1.5%

6094530

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

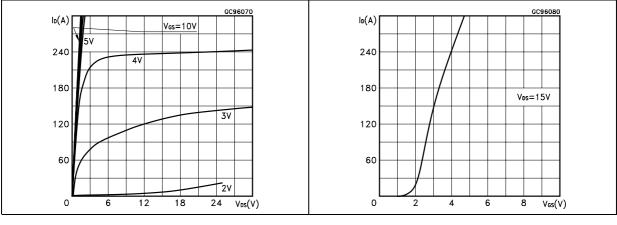


Figure 2.

280TOIG

d=0

κ

10

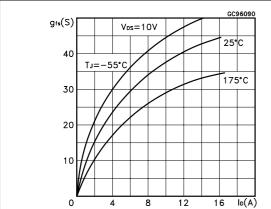
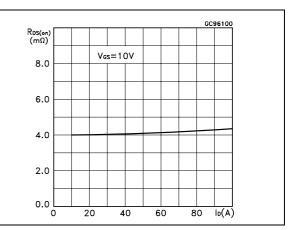
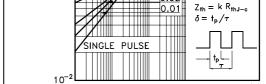
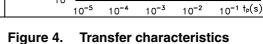
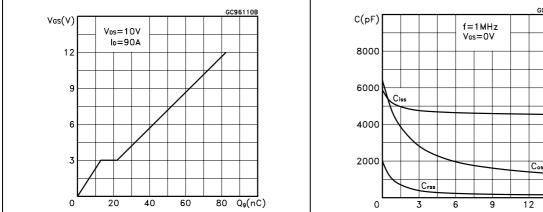




Figure 6. Static drain-source on resistance

57





0.05

0.02

Thermal impedance

Gate charge vs gate-source voltage Figure 8. Capacitance variations Figure 7.

Figure 9. Normalized gate threshold voltage vs temperature

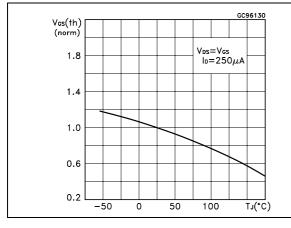


Figure 11. Source-drain diode forward characteristics

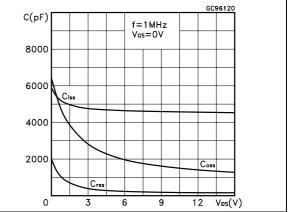


Figure 10. Normalized on resistance vs temperature

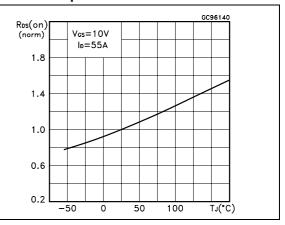
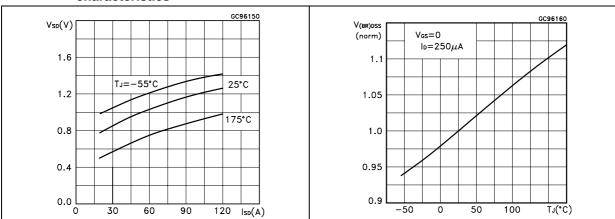



Figure 12. Normalized B_{VDSS} vs temperature

57

3 Test circuit

Figure 13. Switching times test circuit for resistive load

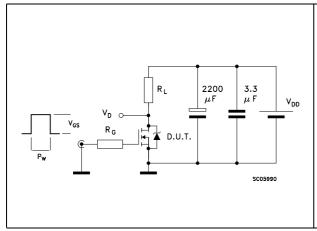
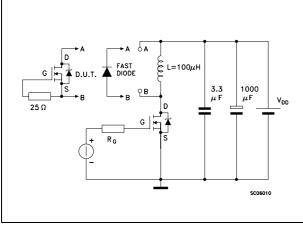



Figure 15. Test circuit for inductive load switching and diode recovery times

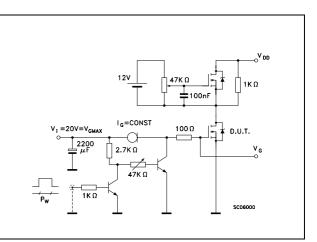
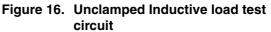



Figure 14. Gate charge test circuit

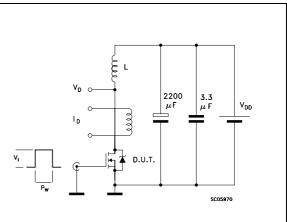
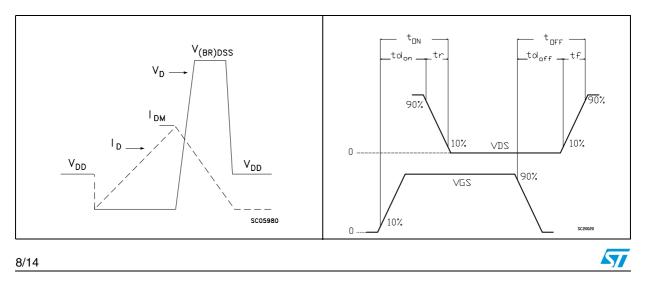
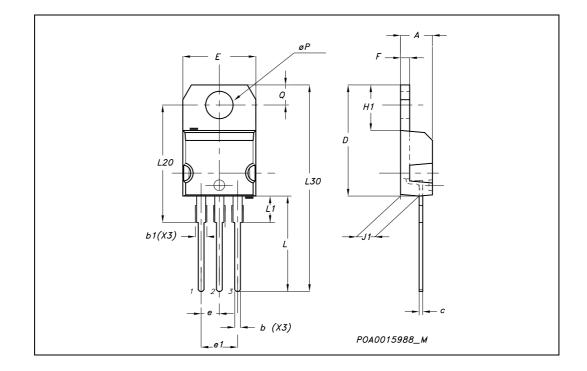
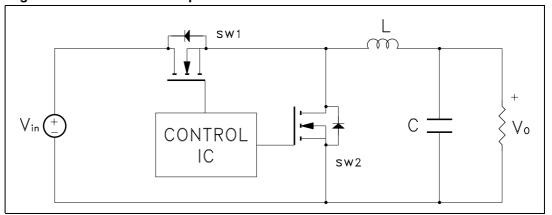



Figure 18. Switching time waveform


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com



57

TO-220 MECHANICAL DATA						
DIM.		mm.			inch	
DINI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
Е	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øР	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

5 Appendix A

The power losses associated with the FETs in a synchronous buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is removed to allow for a safer working junction temperature.

- The low side (SW2) device requires:
- Very low R_{DS(on)} to reduce conduction losses
- Small Qgls to reduce the gate charge losses
- Small Coss to reduce losses due to output capacitance
- Small Qrr to reduce losses on SW1 during its turn-on
- The Cgd/Cgs ratio lower than Vth/Vgg ratio especially with low drain to source
- voltage to avoid the cross conduction phenomenon;
- The high side (SW1) device requires:
- Small Rg and Ls to allow higher gate current peak and to limit the voltage feedback on the gate
- Small Qg to have a faster commutation and to reduce gate charge losses
- Low R_{DS(on)} to reduce the conduction losses.

		High side switching (SW1)	Low side switch (SW2)
Pconduction		$R_{DS(on)SW1} * I_L^2 * \delta$	$R_{DS(on)SW2} * I_L^2 * (1 - \delta)$
Pswitching		$\mathbf{V}_{\text{in}} * (\mathbf{Q}_{\text{gsth}(\text{SW1})} + \mathbf{Q}_{\text{gd}(\text{SW1})}) * \mathbf{f} * \frac{I_L}{I_g}$	Zero Voltage Switching
Pdiode	Recovery (1)	Not applicable	$V_{in} * Q_{rr(SW2)} * f$
Tulude	Conductio n	Not applicable	$V_{f(SW2)} * I_L * t_{deadtime} * f$
Pgate(Q _G)		$Q_{g(SW1)} * V_{gg} * f$	$Q_{gls(SW2)} * V_{gg} * f$
P _{Qoss}		$\frac{V_{in} * Q_{oss(SW1)} * f}{2}$	$\frac{V_{in} * Q_{oss(SW2)} * f}{2}$

 Table 6.
 Power losses calculation

1. Dissipated by SW1 during turn-on

Parameter	Meaning	
d	Duty-cycle	
Q _{gsth}	Post threshold gate charge	
Q _{gls}	Third quadrant gate charge	
Pconduction	On state losses	
Pswitching	On-off transition losses	
Pdiode	Conduction and reverse recovery diode losses	
Pgate	Gate drive losses	
P _{Qoss}	Output capacitance losses	

6 Revision history

Date	Revision	Changes
14-Mar-2005	4	Preliminary document
24-Mar-2005	5	New package inserted (TO-220)
19-Jun-2006	6	New template, no content change
13-Apr-2007	7	Package removed (D ² PAK)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

