onsemi

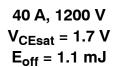
IGBT - Ultra Field Stop

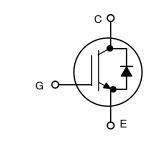
NGTB40N120FL3WG

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Ultra Field Stop Trench construction, and provides superior performance in demanding switching applications, offering both low on–state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co–packaged free wheeling diode with a low forward voltage.

Features

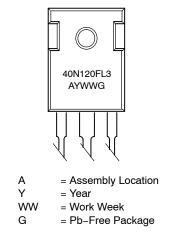
- Extremely Efficient Trench with Field Stop Technology
- $T_{Jmax} = 175^{\circ}C$
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- These are Pb-Free Devices


Typical Applications


- Solar Inverter
- Uninterruptible Power Inverter Supplies (UPS)
- Welding

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	1200	V
Collector current @ Tc = 25°C @ Tc = 100°C	Ι _C	80 40	A
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	160	A
Diode forward current @ Tc = 25°C @ Tc = 100°C	١ _F	80 40	A
Diode pulsed current, T_{pulse} limited by T_{Jmax}	I _{FM}	160	A
Gate-emitter voltage Transient gate-emitter voltage ($T_{pulse} = 5 \ \mu s, \ D < 0.10$)	V _{GE}	±20 ±30	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	454 227	W
Operating junction temperature range	TJ	–55 to +175	°C
Storage temperature range	T _{stg}	–55 to +175	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
NGTB40N120FL3WG	TO–247 (Pb–Free)	30 Units / Rail

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	R _{0JC}	0.33	°C/W
Thermal resistance junction-to-case, for Diode	R _{0JC}	0.61	°C/W
Thermal resistance junction-to-ambient	R _{0JA}	40	°C/W

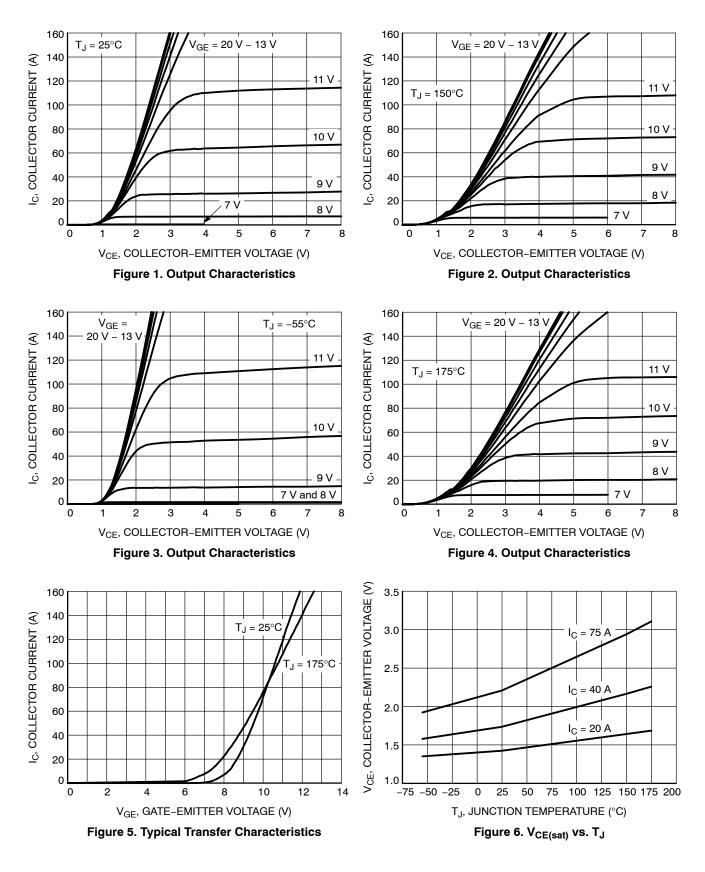
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

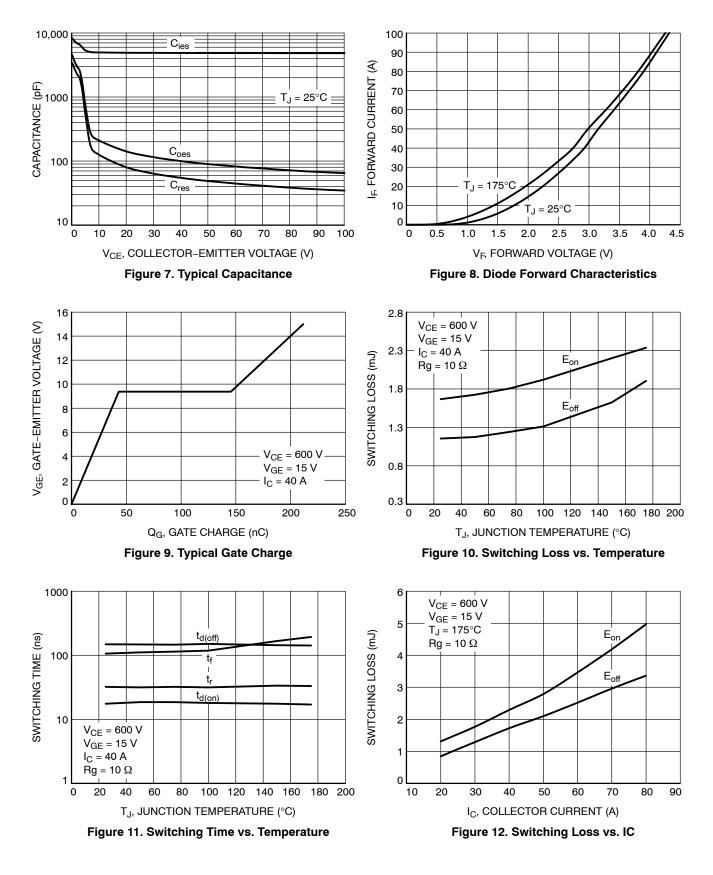
Parameter Test Conditions		Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC						
Collector-emitter breakdown voltage, gate-emitter short-circuited	V_{GE} = 0 V, I _C = 500 µA	V _{(BR)CES}	1200	_	-	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 40 A V_{GE} = 15 V, I _C = 40 A, T _J = 175°C	V _{CEsat}	-	1.7 2.3	1.95 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 400 \ \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$V_{GE} = 0 V$, $V_{CE} = 1200 V$ $V_{GE} = 0 V$, $V_{CE} = 1200 V$, $T_{J=} 175^{\circ}C$	ICES	-	_ 0.5	0.4 _	mA
Gate leakage current, collector-emitter short-circuited	V_{GE} = 20 V , V_{CE} = 0 V	I _{GES}	-	_	200	nA

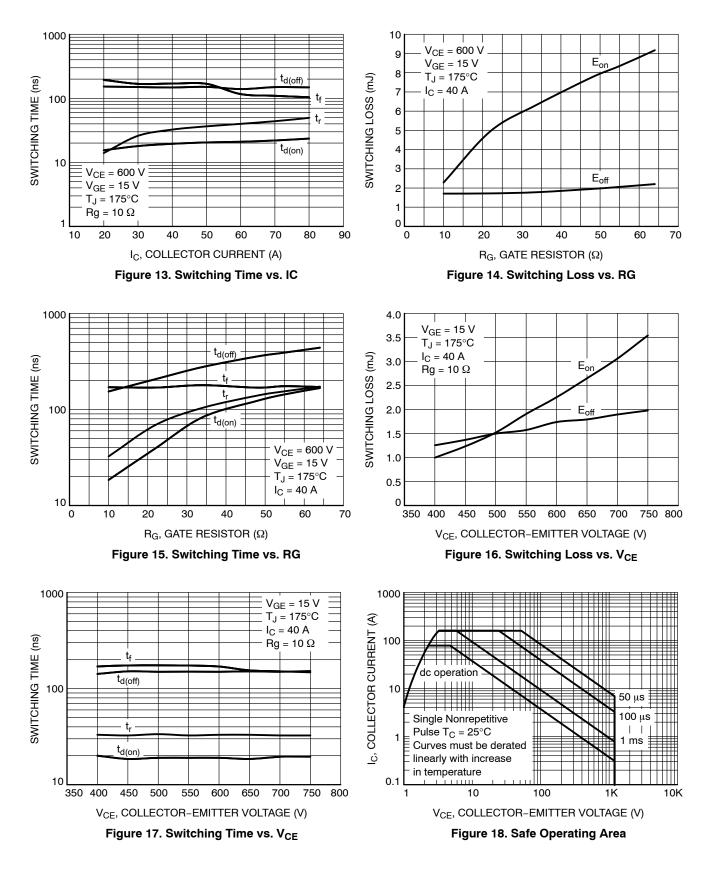
Input capacitance		Cies	-	4912	-	pF
Output capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	140	-	
Reverse transfer capacitance		C _{res}	-	80	-	
Gate charge total		Qg	-	212	-	nC
Gate to emitter charge	V_{CE} = 600 V, I_{C} = 40 A, V_{GE} = 15 V	Q _{ge}	-	43	-	
Gate to collector charge		Q _{gc}	-	102	-	

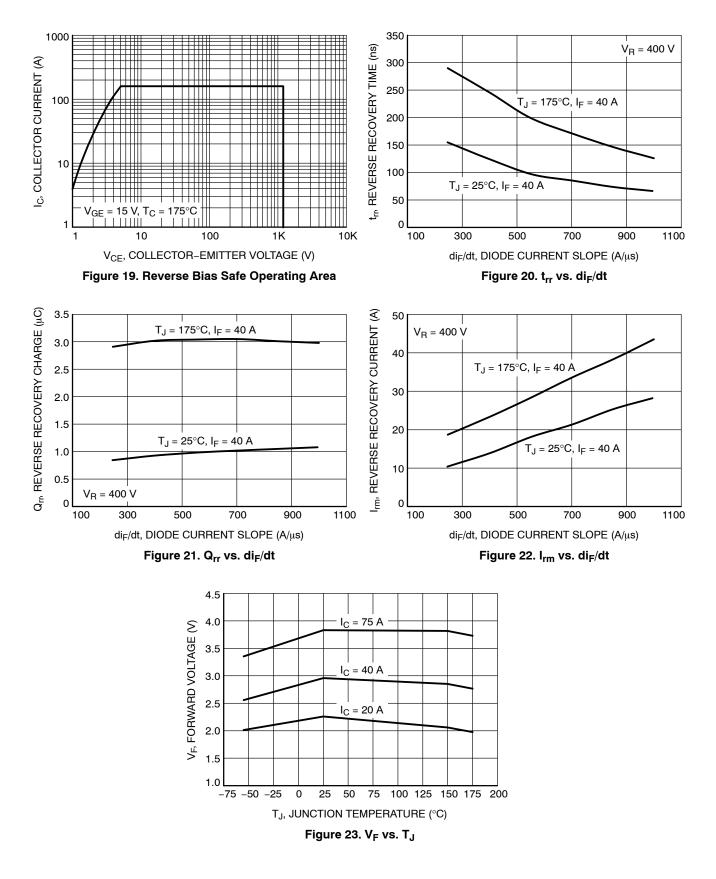
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD

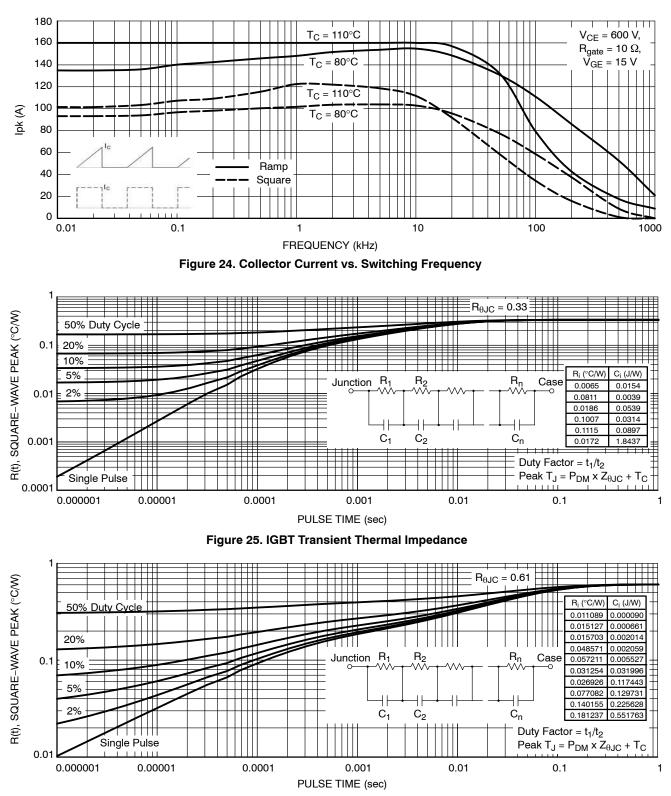
Turn-on delay time		t _{d(on)}	-	18	-	ns
Rise time		t _r	-	31	-	
Turn-off delay time	$T_J = 25^{\circ}C$	t _{d(off)}	-	145	-	
Fall time	$T_{J} = 25^{\circ}C$ $V_{CC} = 600 \text{ V, I}_{C} = 40 \text{ A}$ $R_{g} = 10 \Omega$ $V_{GE} = 15 \text{ V}$	t _f	-	107	-	
Turn-on switching loss	V _{GE} = 15V	E _{on}	-	1.6	-	mJ
Turn-off switching loss		E _{off}	-	1.1	-	
Total switching loss		E _{ts}	-	2.7	-	
Turn-on delay time		t _{d(on)}	-	20	-	ns
Rise time		t _r	-	31	-	
Turn-off delay time	T _J = 175°C	t _{d(off)}	-	153	-	
Fall time	$T_{J} = 175^{\circ}C$ $V_{CC} = 600 \text{ V, }I_{C} = 40 \text{ A}$ $R_{g} = 10 \Omega$ $V_{GE} = 15 \text{ V}$	t _f	-	173	-	
Turn-on switching loss	$V_{GE} = 15 V$	E _{on}	-	2.2	-	mJ
Turn-off switching loss		E _{off}	-	1.7	-	1
Total switching loss		E _{ts}	-	3.9	-	1


DIODE CHARACTERISTIC


Forward voltage	V_{GE} = 0 V, I _F = 40 A V_{GE} = 0 V, I _F = 40 A, T _J = 175°C	V _F		3.0 2.8	3.4	V
Reverse recovery time		t _{rr}	-	86	-	ns
Reverse recovery charge	T.I = 25°C	Q _{rr}	-	0.56	-	μC
Reverse recovery current	$I_{\rm F} = 40$ Å, $V_{\rm R} = 600$ V	I _{rrm}	-	12	-	А
Diode peak rate of fall of reverse recovery current during tb	di _F /dt = 500 A/µs	dl _{rrm} /dt	-	-210	-	A/μs


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
DIODE CHARACTERISTIC						
Reverse recovery time		t _{rr}	-	136	-	ns
Reverse recovery charge	T,₁ = 125°C	Q _{rr}	-	1.47	-	μc
Reverse recovery current	$T_J = 125^{\circ}C$ $I_F = 40 \text{ A}, V_R = 600 \text{ V}$	I _{rrm}	-	20	-	А
Diode peak rate of fall of reverse recovery current during tb	di _F /dt = 500 A/µs	dl _{rrm} /dt	_	-212	_	A/μs


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

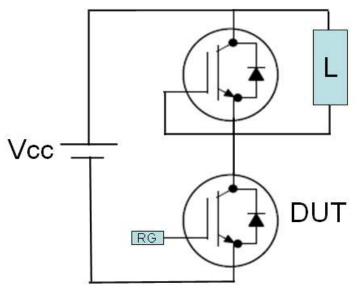


Figure 27. Test Circuit for Switching Characteristics

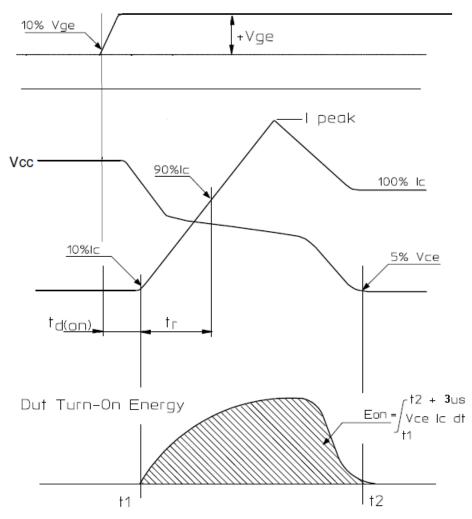
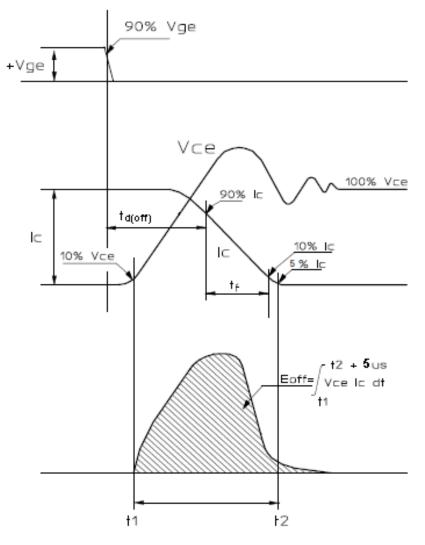
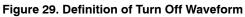
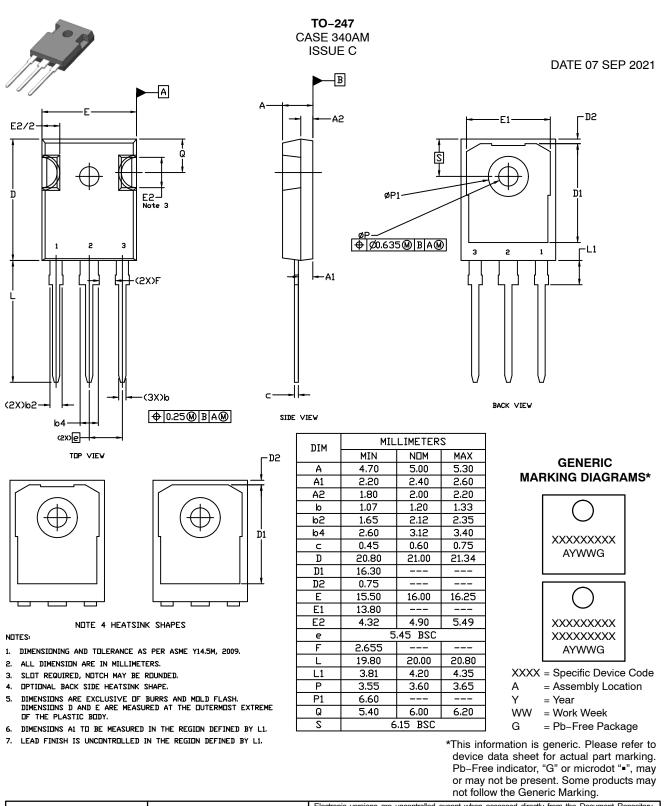





Figure 28. Definition of Turn On Waveform

DOCUMENT NUMBER:	98AON77284F	Electronic versions are uncontrolled except when accessed directly from the Document Hepository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-247		PAGE 1 OF 1			

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales