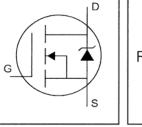
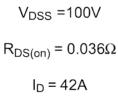
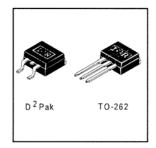
PD-95322

International **ICR** Rectifier

- Advanced Process Technology
- Surface Mount (IRF1310NS)
- Low-profile through-hole (IRF1310NL)
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free


Description


Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.


The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF1310NL) is available for lowprofile applications.

Absolute Maximum Ratings

IRF1310NS/LPbF

HEXFET[®] Power MOSFET

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V [©]	42	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10VS	30	A
IDM	Pulsed Drain Current ① ⑤	140	
$P_D@T_A = 25^{\circ}C$	Power Dissipation	3.8	W
$P_D@T_C = 25^{\circ}C$	Power Dissipation	160	W
	Linear Derating Factor	1.1	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy@S	420	mJ
I _{AR}	Avalanche Current®	22	A
E _{AR}	Repetitive Avalanche Energy®	16	mJ
dv/dt	Peak Diode Recovery dv/dt 3 \$	5.0	V/ns
Tj	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case		0.95	°CM
R _{BJA}	Junction-to-Ambient (PCB Mounted, steady-state)**		40	°C/w

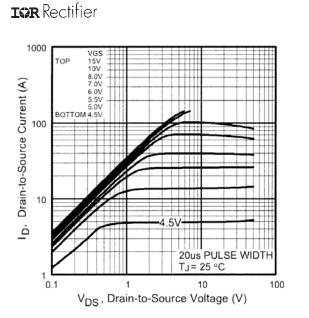
International

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250 \mu A$
AV(BR)DSS/AT	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA®
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.036	Ω	V _{GS} = 10V, I _D = 22A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
9fs	Forward Transconductance	14			S	V _{DS} = 25V, I _D = 22AS
	Drain to Source Lookage Current			25	μA	$V_{DS} = 100V, V_{GS} = 0V$
DSS	Drain-to-Source Leakage Current			250	P/	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
GSS	Gate-to-Source Reverse Leakage			-100	IA	V _{GS} = -20V
Qq	Total Gate Charge			110		I _D = 22A
Q _{gs}	Gate-to-Source Charge			15	nC	V _{DS} = 80V
Q _{gd}	Gate-to-Drain ("Miller") Charge			58		V_{GS} = 10V, See Fig. 6 and 13 \circledast
t _{d(on)}	Turn-On Delay Time		11			$V_{DD} = 50V$
tr	RiseTime		56			I _D = 22A
t _{d(off)}	Turn-Off Delay Time		45		ns	$R_G = 3.6\Omega$
tr	FallTime		40		1	R _D = 2.9Ω, See Fig. 10 ④ ⑤
					nH	Between lead,
L _S	Internal Source Inductance		7.5			and center of die contact
Ciss	Input Capacitance		1900)		$V_{GS} = 0V$
Coss	Output Capacitance		450		pF	V _{DS} = 25V
Crss	Reverse Transfer Capacitance		230		1	f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions				
k	Continuous Source Current	42	42		MOSFET symbol					
	(Body Diode)		A	showing the						
ISM	Pulsed Source Current			140	140	140	140			integral reverse
	(Body Diode) 🛈 🕲					p-n junction diode.				
V _{SD}	Diode Forward Voltage			1.3	V	T_J = 25°C, I_S =22A, V_{GS} = 0V ④				
t _{rr}	Reverse Recovery Time		180	270	ns	$T_{\rm J} = 25^{\circ}C, I_{\rm F} = 22A$				
Qrr	Reverse Recovery Charge		1.2	1.8	μC	di/dt = 100A/µs ⊕ ⑤				
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)								


Notes:

① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) $\textcircled{\ }$ Pulse width \leq 300µs; duty cycle \leq 2%.

- 0 Starting T_J = 25°C, L = 1.7mH R_G = 25 $\Omega,~I_{AS}$ = 22A. (See Figure 12)
- 3 I_{SD} \leq 22A, di/dt \leq 180A/µs, V_{DD} \leq V_{(BR)DSS}, T_{J} \leq 175°C

S Uses IRF1310N data and test conditions

** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended soldering techniques refer to application note #AN-994.

International

Fig 1. Typical Output Characteristics

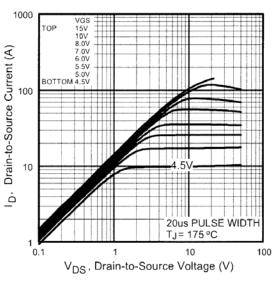


Fig 2. Typical Output Characteristics

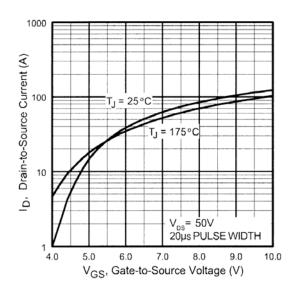


Fig 3. Typical Transfer Characteristics

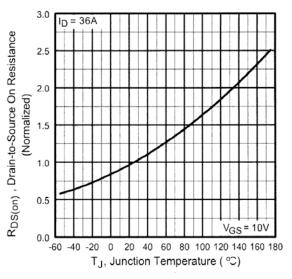
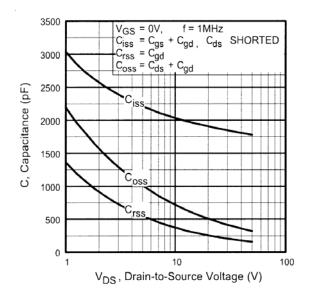




Fig 4. Normalized On-Resistance Vs. Temperature

International

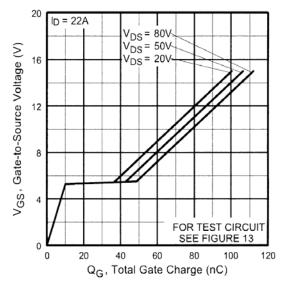


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

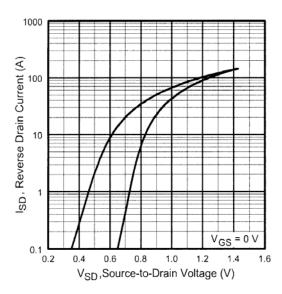


Fig 7. Typical Source-Drain Diode Forward Voltage

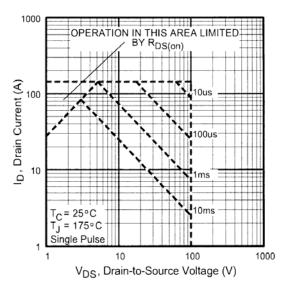
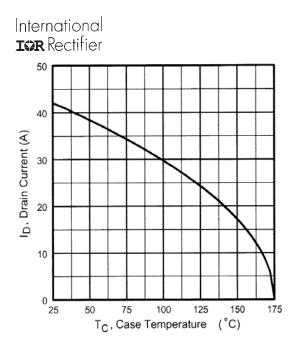
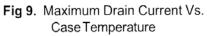
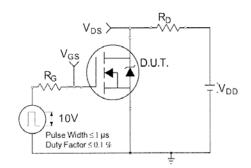





Fig 8. Maximum Safe Operating Area

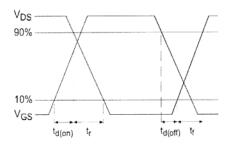


Fig 10b. Switching Time Waveforms

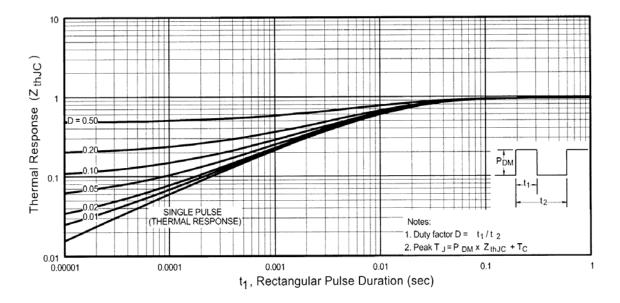


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

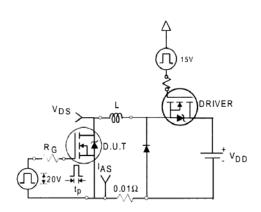


Fig 12a. Unclamped Inductive Test Circuit

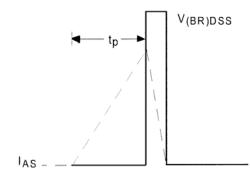


Fig 12b. Unclamped Inductive Waveforms

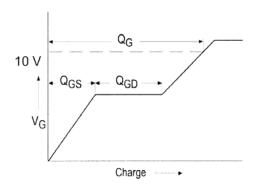


Fig 13a. Basic Gate Charge Waveform

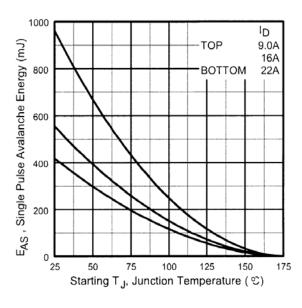


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

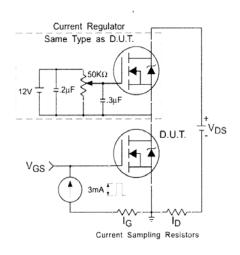
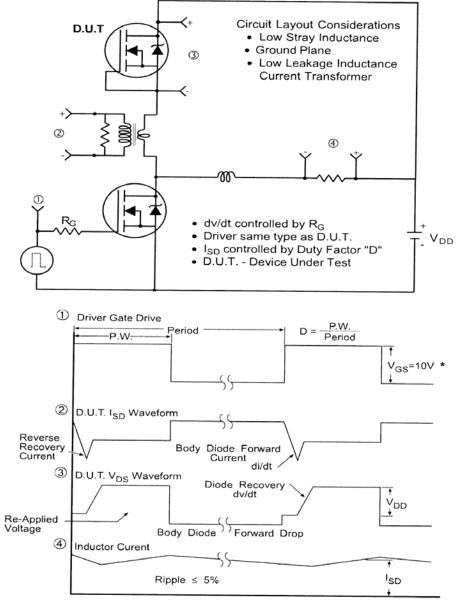


Fig 13b. Gate Charge Test Circuit

www.irf.com

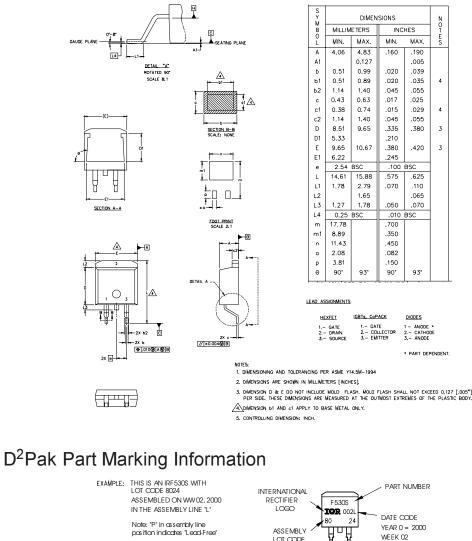

6

International **TOR** Rectifier

IRF1310NS/LPbF

Peak Diode Recovery dv/dt Test Circuit

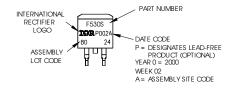
Peak Diode Recovery dv/dt Test Circuit



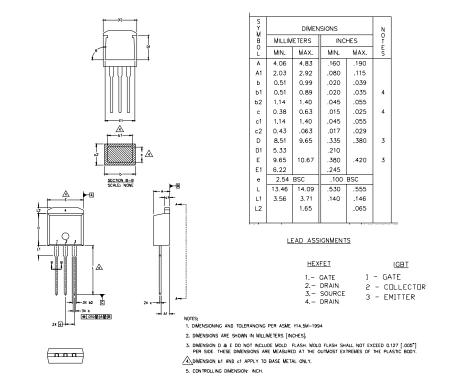
* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

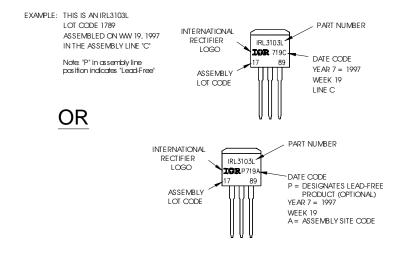
International **TOR** Rectifier


D²Pak Package Outline

НоЦ LOT CODE

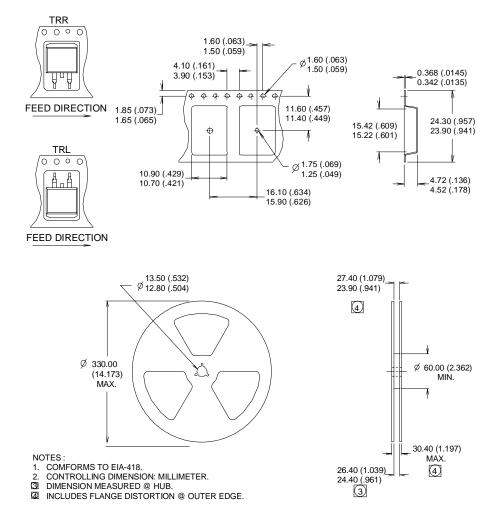

LINE L

OR



International **TOR** Rectifier

TO-262 Package Outline


TO-262 Part Marking Information

International TOR Rectifier

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Data and specifications subject to change without notice.

International **ICR** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 05/04 10 www.irf.com Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.