

Rev. V2

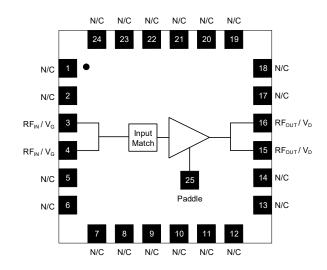
Features

- GaN on Si HEMT D-Mode Amplifier
- Suitable for Linear & Saturated Applications
- Tunable from DC 6 GHz
- 28 V Operation
- 9 dB Gain @ 5.8 GHz
- 45% Drain Efficiency @ 5.8 GHz
- 100% RF Tested
- Thermally-Enhanced 4 mm 24-Lead QFN
- RoHS* Compliant

Applications

- Wireless & High Dynamic Range LNA
- Broadband General Purpose
- Defense Communications
- Land Mobile Radio
- Wireless Infrastructure
- ISM

Description


The MAGX-011086A is a GaN on silicon HEMT amplifier optimized for DC - 6 GHz operation in a user friendly package ideal for high bandwidth applications. The device has been designed for saturated and linear operation with output power levels of 4 W (36 dBm) in an industry standard, low inductance, surface mount QFN package. The pads of the package form a coplanar launch that naturally absorbs lead parasitics and features a small PCB outline for space constrained applications.

Ordering Information¹

Part Number	Package
MAGX-011086A	Bulk Quantity
MAGX-011086ATR0500	500 piece reel
MAGX-011086A-SMB2	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration²

Pin#	Pin Name	Function	
1 - 2	N/C	No Connection	
3 - 4	RF _{IN} / V _G	RF Input / Gate	
5 -14	N/C	No Connection	
15 - 16	RF _{OUT} / V _D	RF Output / Drain	
17 - 24	N/C	No Connection	
25	Paddle ³	Ground / Source	

- 2. All no connection pins may be left floating or grounded.
- The exposed pad centered on the package bottom must be connected to RF and DC ground and provide a low thermal resistance heat path.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V2

RF Electrical Specifications: $T_A = 25$ °C, $V_{DS} = 28$ V, $I_{DQ} = 50$ mA

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	CW, 5.8 GHz	Gss	-	11	-	dB
Saturated Output Power	d Output Power CW, 5.8 GHz		-	37	-	dBm
Drain Efficiency at Saturation CW, 5.8 GHz		h _{SAT}	-	50	-	%
Power Gain	sin 5.8 GHz, P _{OUT} = 4 W		8	9	-	dB
Drain Efficiency 5.8 GHz, P _{OUT} = 4 W		h	40	45	-	%
Ruggedness: Output Mismatch	All phase angles	Y VSWR = 10:1, No Device Dam		amage		

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 100 V	I _{DLK}	-	-	2	mA
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	I _{GLK}	-	-	1	mA
Gate Threshold Voltage	V _{DS} = +28 V, I _D = 2 mA	V _T	-3.1	-2.1	-1.1	٧
Gate Quiescent Voltage	V _{DS} = +28 V, I _D = 50 mA	V_{GSQ}	-2.7	-1.8	-0.9	٧
On Resistance	$V_{DS} = +2 \text{ V}, I_D = 15 \text{ mA}$	R _{ON}	-	2.0	-	W
Saturated Drain Current	V _{DS} = 7 V, Pulse Width 300 μs	I _{D(SAT)}	-	1.4	-	Α

Rev. V2

Absolute Maximum Ratings^{4,5,6,7,8}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	100 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Gate Current, I _G	4 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C		
Absolute Maximum Channel Temperature	+250°C		

- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 5. MACOM does not recommend sustained operation near these survivability limits.
- 6. Operating at drain source voltage V_{DS} < 32 V will ensure MTTF > 1 x 10⁷ hours.
 7. Operating at nominal conditions with TCH ≤ 225°C will ensure MTTF > 1 x 10⁷ hours.
- 8. MTTF may be estimated by the expression MTTF (hours) = A e [B + C/(T+273)] where T is the channel temperature in degrees Celsius, A = 3.686, B = -35.00, and C = 25,416.

Thermal Characteristics 9,10

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	V _{DS} = 28 V, T _J = 200°C	Θ _{JC}	12.5	°C/W

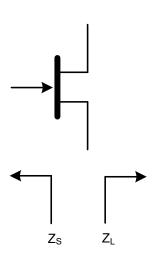
^{9.} Junction temperature (T₁) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink. 10. The thermal resistance of the mounting configuration must be added to the device Θ_{JC} , for proper T_J calculation during operation. The recommended via pattern, shown on page 4, on a 20 mil thick, 1 oz plated copper, PCB adds an additional 4 °C/W to the typical value.

Handling Procedures

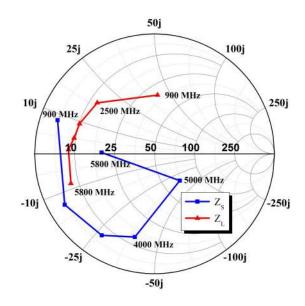
Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1A devices.



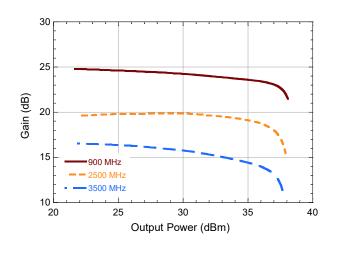
Rev. V2

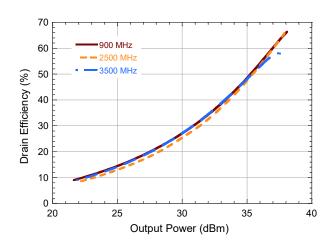

Load-Pull Performance: V_{DS} = 28 V, I_{DQ} = 50 mA, T_A = 25°C Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

Frequency (MHz)	Z _s (W)	Z _L (W)	P _{SAT} (W)	G _{SS} (dB)	Drain Efficiency @ P _{SAT} (%)
900	4.0 + j8.4	31.9 + j41.2	5.8	24.6	65
2500	4.0 - j13.1	12.5 + j18.0	5.1	19.5	63
3500	6.8 - j26.8	10.1 + j9.3	5.0	16.0	57
4000	13.4 - j37.8	9.5 + j4.7	5.0	15.3	56
5000	67.4 - j33.2	8.2 + j1.2	5.0	13.8	55
5800	19.4 + j0.5	7.7 - j8.4	5.0	12.0	55

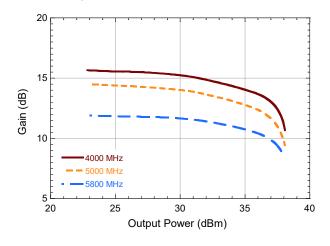
Impedance Reference

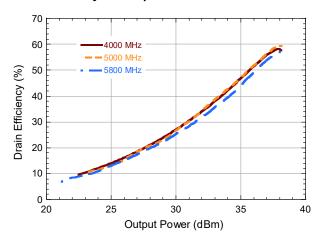
Z_S and Z_L vs. Frequency




Rev. V2

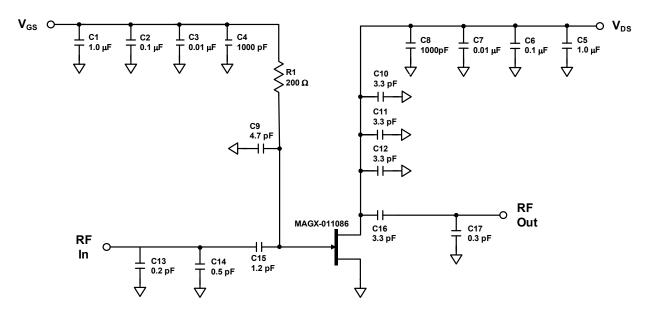
Load-Pull Performance: $V_{DS} = 28 \text{ V}$, $I_{DQ} = 50 \text{ mA}$, $T_A = 25^{\circ}\text{C}$ Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance


Gain vs. Output Power


Drain Efficiency vs. Output Power

Gain vs. Output Power

Drain Efficiency vs. Output Power



Rev. V2

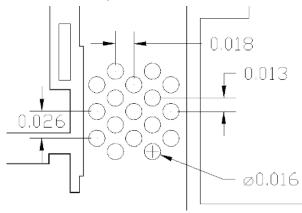
Evaluation Board and Recommended Tuning Solution

5.8 GHz Narrowband Circuit

Description

Parts measured on evaluation board (20-mil thick RO4350). The PCB's electrical and thermal ground is provided using a standard-plated densely packed via hole array (see recommended via pattern).

Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.


Bias Sequencing Turning the device ON

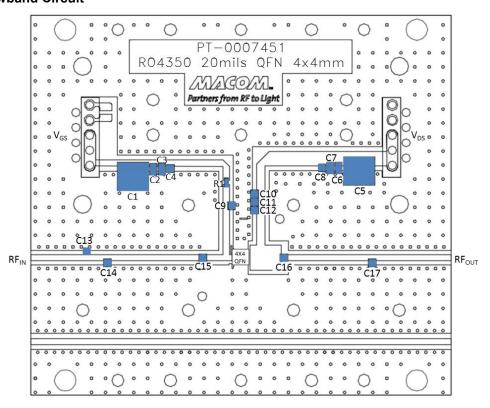
- 1. Set V_{GS} beyond pinch-off (V_P), typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (28 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to V_{P} .
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

Recommended Via Pattern (All dimensions shown as inches)

6

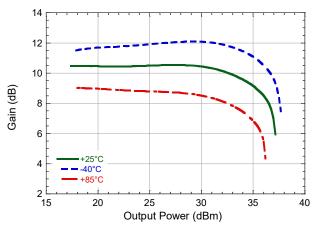

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

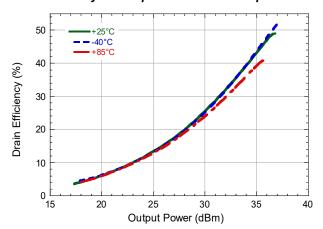
Visit www.macom.com for additional data sheets and product information.

Rev. V2

Evaluation Board and Recommended Tuning Solution 5.8 GHz Narrowband Circuit

Parts list

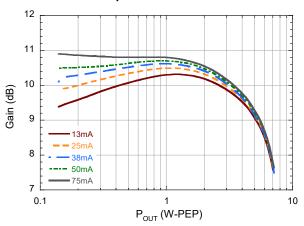

Reference	Value	Tolerance	Manufacturer	Part Number
C1, C5	1.0 µF	10%	AVX	12101C105KAT2A
C2, C6	0.1 μF	10%	Kemet	C1206C104K1RACTU
C3, C7	0.01 µF	10%	AVX	12061C103KAT2A
C4, C8	1000 pF	10%	Kemet	C0805C102K1RACTU
C9	4.7 pF	0.1 pF	ATC	ATC800A4R7B250
C10, C11, C12, C16	3.3 pF	0.1 pF	ATC	ATC800A3R3B250
C13	0.2 pF	0.1 pF	ATC	ATC800A0R2B250
C14	0.5 pF	0.1 pF	ATC	ATC800A0R5B250
C15	1.2 pF	0.1 pF	ATC	ATC800A1R2B250
C17	0.3 pF	0.1 pF	ATC	ATC800A0R3B250
R1	200 Ω	1%	Panasonic	ERJ-6ENF2000V
RF Connector	SMA	_	Amphenol-Connex	132150
DC Connector	D-Subminiature	_	ERNI	284525
PCB	RO4350	_	Rogers Corp	_


Rev. V2

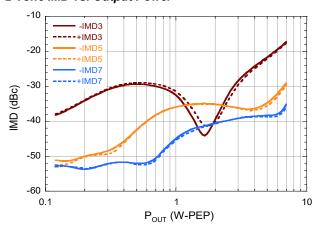
Typical Performance as measured in the 5.8 GHz evaluation board: CW, V_{DS} = 28 V, I_{DQ} = 50 mA (unless noted)

Gain vs. Output Power over Temperature

Drain Efficiency vs. Output Power over Temperature

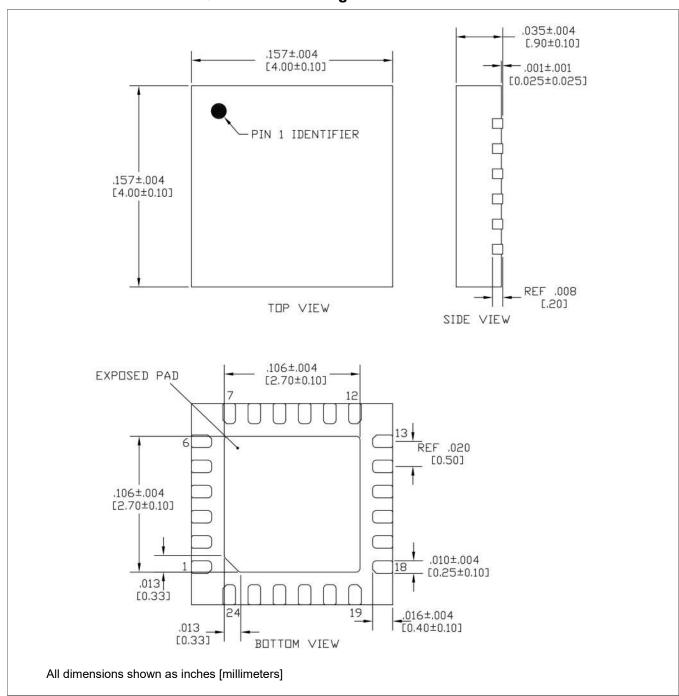

Rev. V2

Typical 2-Tone Performance as measured in the 5.8 GHz evaluation board: 1 MHz Tone Spacing, $V_{DS} = 28 \text{ V}$, $I_{DQ} = 50 \text{ mA}$, $T_A = 25^{\circ}\text{C}$ (unless noted)


2-Tone IMD3 vs. Output Power vs. Quiescent Current

-10 13mA -15 38mA -20 - 50mA 75mA IMD (dBc) -25 -30 -35 -40 -45 0.1 10 P_{OUT} (W-PEP)

2-Tone Gain vs. Output Power vs. Quiescent Current


2-Tone IMD vs. Output Power

Rev. V2

Lead Free 4 mm 24 Lead QFN Plastic Package[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Matte Sn.

GaN Amplifier 28 V, 4 W DC- 6 GHz

MAGX-011086A

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.