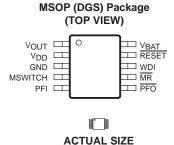
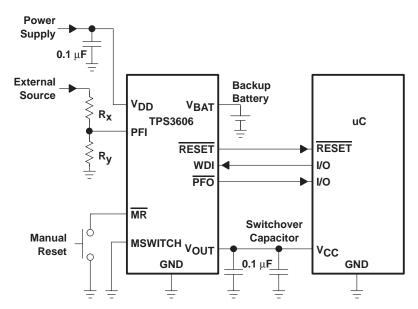
SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

features


- Supply Current of 40 μA (Max)
- Precision 3.3-V Supply Voltage Monitor Other Voltage Options on Request
- Watchdog Timer With 800-ms Time-Out
- Backup-Battery Voltage Can Exceed V_{DD}
- Power-On Reset Generator With Fixed 100-ms Reset Delay Time
- Voltage Monitor for Power-Fail or Low-Battery Monitoring
- Manual Switchover to Battery-Backup Mode
- Manual Reset
- Battery Freshness Seal
- 10-Pin MSOP Package
- Temperature Range . . . −40°C to 85°C

description

The TPS3606-33 supervisory circuit monitors and controls the processor activity. In case of powerfail or brownout conditions, the backup-battery switchover function of the TPS3606-33 allows a low-power processor and its peripherals to run from the installed backup battery without asserting a reset beforehand.


typical applications

- Fax Machines
- Set-Top Boxes
- Advanced Voice Mail Systems
- Portable Battery Powered Equipment
- Computer Equipment
- Advanced Modems
- Automotive Systems
- Portable Long-Time Monitoring Equipment
- Point-of-Sale Equipment

3,05 mm x 4,98 mm

typical operating circuit

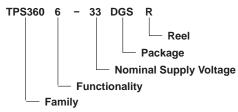
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

description (continued)

During power on, $\overline{\text{RESET}}$ is asserted when the supply voltage (V_{DD} or V_{BAT}) becomes higher than 1.1 V. Thereafter, the supply voltage supervisor monitors V_{OUT} and keeps the $\overline{\text{RESET}}$ output active as long as V_{OUT} remains below the threshold voltage (V_{IT}). An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time starts after V_{OUT} has risen above V_{IT}. When the supply voltage drops below V_{IT}, the output becomes active (low) again.


The TPS3606-33 is available in a 10-pin MSOP package and is characterized for operation over a temperature range of –40°C to 85°C.

PACKAGE INFORMATION

TA	DEVICE NAME	MARKING
-40°C to 85°C	TPS3606-33DGSR [†]	AKE

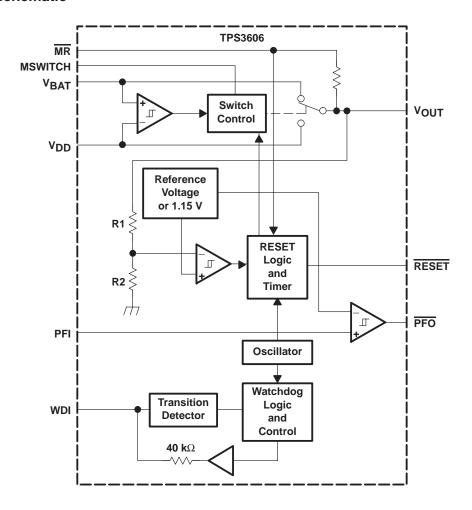
[†] The DGSR passive indicates tape and reel of 2500 parts.

ordering information application specific versions (see Note)

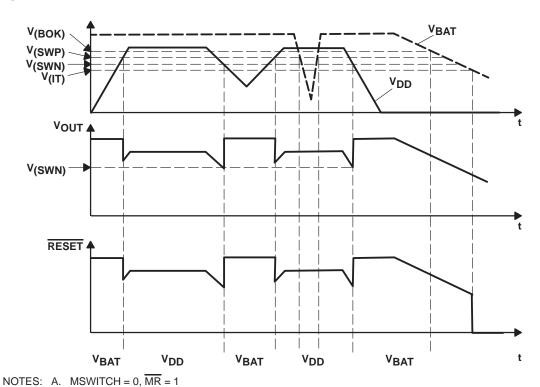
DEVICE NAME	NOMINAL VOLTAGE [‡] , V _{NOM}
TPS3606-33 DGS	3.3 V

For other threshold voltages, contact the local TI sales office for availability and lead-time.

FUNCTION TABLES TPS3606


V _{DD} > V _{SW}	V _{OUT} > V _{IT}	V _{DD} > V _{BAT}	V _{OUT}	RESET
0	0	0	VBAT	0
0	0	1	V_{DD}	0
0	1	0	V_{BAT}	1
0	1	1	V_{DD}	1
1	1	0	V_{DD}	1
1	1	1	V_{DD}	1

PFI > V _{PFI}	PFO
0	0
1	1


CONDITION .: VOUT > VDD(min)

functional schematic

timing diagram

Terminal Functions

TERMINAL			DECORPTION	
NAME	NO.	I/O	DESCRIPTION	
GND	3	I	Ground	
MR	7	1	Manual reset input	
MSWITCH	4	1	Manual switch to force device into battery-backup mode	
PFI	5	1	Power-fail comparator input	
PFO	6	0	Power-fail comparator output	
RESET	9	0	Active-low reset output	
V _{BAT}	10	- 1	Backup-battery input	
V_{DD}	2	1	nput supply voltage	
Vout	1	0	Supply output	
WDI	8	I	Watchdog timer input	

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

detailed description

battery freshness seal

The battery freshness seal of the TPS3606 family disconnects the backup battery from the internal circuitry until it is needed. This ensures that the backup battery connected to V_{BAT} is fresh when the final product is put to use. The following steps explain how to enable the freshness seal mode:

- Connect V_{BAT} (V_{BAT} > V_{BAT(min)})
- 2. Ground PFO
- 3. Connect PFI to V_{DD} or PFI > V_(PFI)
- 4. Connect V_{DD} to power supply (V_{DD} > V_{IT})
- Ground MR
- 6. Power down V_{DD}
- 7. The freshness seal mode is entered and pins \overline{PFO} and \overline{MR} can be disconnected.

The battery freshness seal mode is disabled by the positive-going edge of RESET when V_{DD} is applied.

power-fail comparator (PFI and PFO)

An additional comparator is provided to monitor voltages other than the nominal supply voltage. The power-fail input (PFI) is compared with an internal voltage reference of 1.15 V. If the input voltage falls below the power-fail threshold ($V_{(PFI)}$) of 1.15 V typical, the power-fail output (PFO) goes low. If it goes above $V_{(PFI)}$ plus about 12-mV hysteresis, the output returns to high. By connecting two external resistors, it is possible to supervise any voltages above $V_{(PFI)}$. The sum of both resistors should be about 1 M Ω , to minimize power consumption and also to ensure that the current in the PFI pin can be neglected compared with the current through the resistor network. The tolerance of the external resistors should be not more than 1% to ensure minimal variation of sensed voltage.

If the power-fail comparator is unused, connect PFI to ground and leave PFO unconnected.

backup-battery switchover

In the event of a brownout or power failure, it may be necessary to keep a processor running. If a backup battery is installed at V_{BAT} , the devices automatically connect the processor to backup power when V_{DD} fails. In order to allow the backup battery (e.g., a 3.6-V lithium cell) to have a higher voltage than V_{DD} , this family of supervisors does not connect V_{BAT} to V_{OUT} when V_{BAT} is greater than V_{DD} . V_{BAT} only connects to V_{OUT} (through a 2- Ω switch) when V_{OUT} falls below $V_{(SWN)}$ and V_{BAT} is greater than V_{DD} . When V_{DD} recovers, switchover is deferred either until V_{DD} crosses V_{BAT} , or when V_{DD} rises above the threshold ($V_{(SWP)}$).

V _{DD} > V _{BAT}	V _{DD} > V _(SWN)	V _{OUT}
1	1	V_{DD}
1	0	V_{DD}
0	1	V_{DD}
0	0	V _{BAT}

detailed description (continued)

manual switchover (MSWITCH)

While operating in the normal mode from V_{DD} , the device can be manually forced to operate in the battery-backup mode by connecting MSWITCH to V_{DD} . The table below shows the different switchover modes.

	MSWITCH	Status
Vd-	GND	V _{DD} mode
V _{DD} mode	V_{DD}	Switch to battery-backup mode
Battany backup mada	GND	Battery-backup mode
Battery-backup mode	V_{DD}	Battery-backup mode

If the manual switchover feature is not used, MSWITCH must be connected to ground.

watchdog

In a microprocessor- or DSP-based system, it is not only important to supervise the supply voltage, it is also important to ensure the correct program execution. The task of a watchdog is to ensure that the program is not stalled in an indefinite loop. The microprocessor, microcontroller, or the DSP has to toggle the watchdog input within typically 0.8 s to avoid a time-out from occurring. Either a low-to-high or a high-to-low transition resets the internal watchdog timer. If the input is unconnected, the watchdog is disabled and is retriggered internally.

saving current while using the watchdog

The watchdog input is internally driven low during the first 7/8 of the watchdog time-out period, then momentarily pulses high, resetting the watchdog counter. For minimum watchdog input current (minimum overall power consumption), leave WDI low for the majority of the watchdog time-out period, pulsing it low-high-low once within 7/8 of the watchdog time-out period to reset the watchdog timer. If instead, WDI is externally driven high for the majority of the time-out period, a current of e.g. 5 V/40 $k\Omega \approx 125 \,\mu\text{A}$ can flow into WDI.

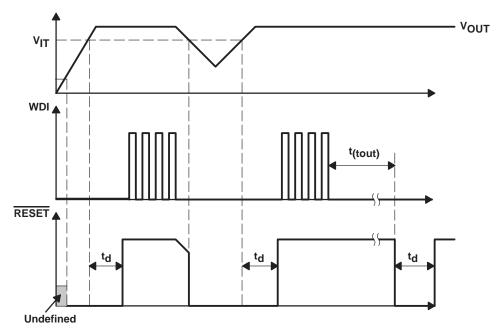


Figure 1. Watchdog Timing

TPS3606-33 BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage: V _{DD} (see Note1)	
MR, WDI, and PFI pins (see Note 1)	$-0.3 \text{ V to } (V_{DD} + 0.3 \text{ V})$
Continuous output current at V _{OUT} : I _O	300 mA
All other pins, IO	±10 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A < 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DGS	424 mW	3.4 mW/°C	271 mW	220 mW

recommended operating conditions at specified temperature range

	N N	MIN	MAX	UNIT
Supply voltage, V _{DD}		1.65	5.5	V
Battery supply voltage, V _{BAT}		1.5	5.5	V
Input voltage, V _I		0	V _O + 0.3	V
High-level input voltage, VIH	0.7	′ x VO		V
Low-level input voltage, all other pins, V _{IL}			0.3 x V _O	V
Continuous output current at V _{OUT} , I _O			200	mA
Input transition rise and fall rate at WDI, MSWITCH, $\Delta t/\Delta V$			100	ns/V
Slew rate at V _{DD} or V _{BAT}			34	mV/μs
Operating free-air temperature range, T _A		-40	85	°C

NOTE 1: All voltage values are with respect to GND. For reliable operation the device must not be operated at 7 V for more than t = 1000h continuously.

TPS3606-33 BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	High level autout value			$V_{OUT} = 2 \text{ V}, I_{OH} = -400 \mu\text{A}$	V _{OUT} – 0.2 V			
Vall		RESET	$V_{OUT} = 3.3 \text{ V}$ $I_{OH} = -2 \text{ mA}$ $V_{OUT} = 5 \text{ V}$, $I_{OH} = -3 \text{ mA}$	V _{OUT} – 0.4 V			V	
VOH	High-level output voltage		$V_{OUT} = 1.8 \text{ V}, I_{OH} = -20 \mu\text{A}$	V _{OUT} – 0.3 V			V	
		PFO	$V_{OUT} = 3.3 \text{ V}, \ I_{OH} = -80 \mu\text{A}$ $V_{OUT} = 5 \text{ V}, \ I_{OH} = -120 \mu\text{A}$	V _{OUT} – 0.4 V				
		RESET	$V_{OUT} = 2 \text{ V}$, $I_{OL} = 400 \mu \text{A}$			0.2		
VOL	V _{OL} Low-level output voltage		$V_{OUT} = 3.3 \text{ V}, I_{OL} = 2 \text{ mA}$ $V_{OUT} = 5 \text{ V}, I_{OL} = 3 \text{ mA}$			0.4	V	
V _{res}	Power-up reset voltage (see Note 2)		$V_{BAT} > 1.1 \text{ V}$ or $V_{DD} > 1.4 \text{ V}$, $I_{OL} = 20 \mu\text{A}$			0.4	V	
	Normal mode		$I_O = 5 \text{ mA}, \qquad V_{DD} = 1.8 \text{ V}$	V _{DD} – 50 mV				
			$I_O = 75 \text{ mA}, V_{DD} = 3.3 \text{ V}$	V _{DD} – 150 mV				
Vout			$I_O = 150 \text{ mA}, V_{DD} = 5 \text{ V}$	V _{DD} – 250 mV			V	
	Battery-backup mode		$I_{O} = 4 \text{ mA}, \qquad V_{BAT} = 1.5 \text{ V}$	V _{BAT} – 50 mV				
			$I_O = 75 \text{ mA}, V_{BAT} = 3.3 \text{ V}$	V _{BAT} – 150 mV				
Tala (a.a.)	V _{DD} to V _{OUT} on-resistance		V _{DD} = 3.3 V		1	2	Ω	
^r ds(on)	V _{BAT} to V _{OUT} on-resistar	ice	V _{BAT} = 3.3 V		1	2	32	
VIT	Negative-going input threshold voltage (see Notes 3 and 4)	TPS3606x33		2.87	2.93	2.99	V	
V _(PFI)	Power-fail input threshold voltage	PFI		1.13	1.15	1.17		
V _(SWN)	Battery switch threshold voltage negative-going VOUT			V _{IT} + 1%	V _{IT} + 2%	V _{IT} + 3.2%	V	

NOTES: 2. The lowest supply voltage at which \overline{RESET} becomes active. $t_{\Gamma(VDD)} \ge 15 \,\mu\text{s/V}$.

3. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 μ F) should be placed near the supply terminal.

4. Voltage is sensed at VOUT

5. For details on how to optimize current consumption when using WDI refer to section detailed description.

TPS3606-33 BATTERY-BACKUP SUPERVISOR FOR LOW-POWER PROCESSORS

SLVS335C - DECEMBER 2000 - REVISED JANUARY 2007

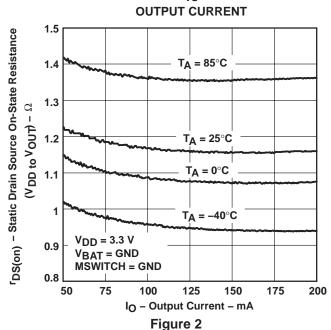
electrical characteristics over recommended operating conditions (unless otherwise noted) (continued)

	PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
			1.65 V < V _{IT} < 2.5 V	20		
		V _{IT}	2.5 V < V _{IT} < 3.5 V	40		
			3.5 V < V _{IT} < 5.5 V	50		
V _{hys}	Hysteresis	VPFI		12		mV
'			1.65 V < V _(SWN) < 2.5 V	85		
		V(SWN)	2.5 V < V _(SWN) < 3.5 V	100		
		, ,	3.5 V < V _(SWN) < 5.5 V	110		
	I _{IH} High-level input current	WDI	$WDI = V_{DD} = 5.5 V$		150	μΑ
ЧH		MR	$\overline{MR} = 0.7 \times V_{DD}, V_{DD} = 5 \text{ V}$	-33	-76	
		WDI	WDI = 0 V, VDD = 5 V		-150	
IIL.	Low-level input current	MR	$\overline{MR} = 0 \text{ V}, \qquad V_{DD} = 5 \text{ V}$	-110	-255	
II	Input current	PFI, MSWITCH	V _I < V _{DD}	-25	25	nA
			PFO = 0 V, V _{DD} = 1.8 V		-0.3	
los	Short-circuit current	hort-circuit current PFO	$\overline{\text{PFO}} = 0 \text{ V}, \qquad \text{V}_{\text{DD}} = 3.3 \text{ V}$		-1.1	mA
			$\overline{PFO} = 0 \text{ V}, \qquad \text{V}_{DD} = 5 \text{ V}$		-2.4	
1	V cumply ourront		$V_{OUT} = V_{DD}$		40	
IDD	V _{DD} supply current		V _{OUT} = V _{BAT}		8	μΑ
	M. sometiment		V _{OUT} = V _{DD}	-0.1	0.1	
I(BAT)	V _{BAT} supply current		V _{OUT} = V _{BAT}		40	μΑ
Ci	Input capacitance		V _I = 0 V to 5 V	,	5	pF

timing requirements at R_L = 1 M Ω , C_L = 50 pF, T_A = -40°C to 85°C

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V_{DD}	$V_{IH} = V_{IT} + 0.2 \text{ V}, V_{IL} = V_{IT} - 0.2 \text{ V}$	5			μs
t _w	Pulse width	MR	$V_{DD} > V_{IT} + 0.2 \text{ V}, V_{IL} = 0.3 \text{ x } V_{DD}, V_{IH} = 0.7 \text{ x } V_{DD}$	100			
		WDI					ns

switching characteristics at R_L= 1 M Ω , C_L = 50 pF, T_A = -40°C to 85°C


	PARAMETER		TEST CON	MIN	TYP	MAX	UNIT	
td	Delay time		V _{DD} ≥ V _{IT} + 0.2 V, M See timing diagram	$IR \ge 0.7 \times V_{DD}$,	60	100	140	ms
t(tout)	Watchdog time-out		$V_{DD} > V_{IT} + 0.2 V$, So	ee timing diagram	0.48	0.8	1.12	S
	Propagation (delay) time,	V _{DD} to RESET	$V_{IL} = V_{IT} - 0.2 V$	V _{IH} = V _{IT} + 0.2 V		2	5	μs
touu		PFI to PFO	V _{IL} = V _(PFI) - 0.2 V, \	V _{IH} = V _(PFI) + 0.2 V		3	5	μs
^t PHL	high-to-low-level output	MR to RESET	$V_{DD} \ge V_{IT} + 0.2 \text{ V}, V_{IH} = 0.7 \text{ x } V_{DD}$	$I_{L} = 0.3 \times V_{DD}$		0.1	1	μs
	Transition time	V _{DD} to V _{BAT}	$V_{IL} = V_{(BAT)} - 0.2 \text{ V}, \text{ V}$ $V_{(BAT)} < V_{IT}$	$I_{H} = V_{(BAT)} + 0.2 V,$			3	μs

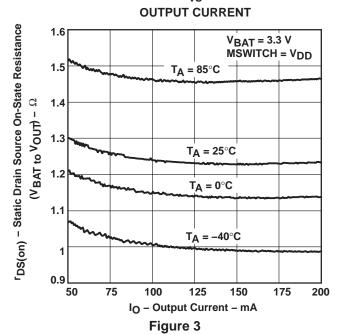
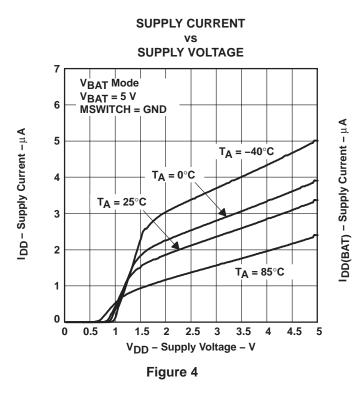
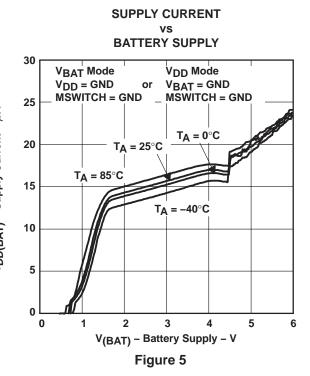
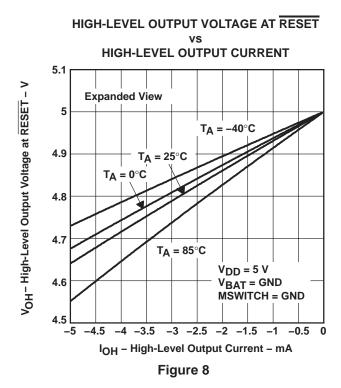

Table of Graphs

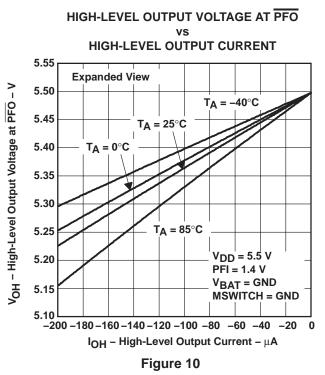
			FIGURE
	Static drain-source on-state resistance (V _{DD} to V _{OUT})	vs Output current	2
rDS(on)	Static drain-source on-state resistance (VBAT to VOUT)	vs Output current	3
	Complex company	vs Supply voltage	4
IDD	Supply current	vs Battery supply	5
VIT	Input threshold voltage at RESET	vs Free-air temperature	6
V	High-level output voltage at RESET	and Park Investment assessed	7, 8
VOH	High-level output voltage at PFO	vs High-level output current	9, 10
VOL	Low-level output voltage at RESET	vs Low-level output current	11, 12
	Minimum pulse duration at V _{DD}	vs Threshold voltage overdrive at V _{DD}	13
	Minimum pulse duration at PFI	vs Threshold voltage overdrive at PFI	14


STATIC DRAIN SOURCE ON-STATE RESISTANCE (V_{DD} TO V_{OUT}) vs OUTPUT CURRENT



STATIC DRAIN SOURCE ON-STATE RESISTANCE (V_{BAT} TO V_{OUT})




HIGH-LEVEL OUTPUT VOLTAGE AT RESET

INPUT THRESHOLD VOLTAGE AT RESET VS FREE-AIR TEMPERATURE 1.001 0.999 0.999 0.998 0.995 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 TA - Free-Air Temperature - °C Figure 6

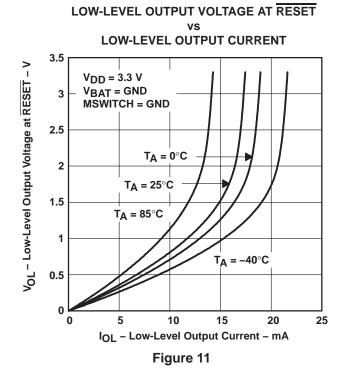
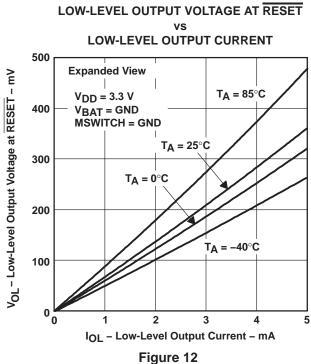
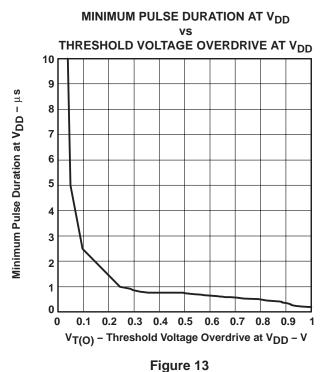

HIGH-LEVEL OUTPUT CURRENT 6 V_{OH} - High-Level Output Voltage at RESET - V $V_{DD} = 5 V$ $V_{BAT} = GND$ MSWITCH = GND 5 $T_A = -40^{\circ}C$ T_A = 25°C 4 $T_A = 0^{\circ}C$ 3 2 T_A = 85°C -35 -30 -25 -20 -15 -5 0 IOH - High-Level Output Current - mA

Figure 7





HIGH-LEVEL OUTPUT VOLTAGE AT PFO **HIGH-LEVEL OUTPUT CURRENT** V_{OH} - High-Level Output Voltage at PFO - V 5 $T_A = -40^{\circ}C$ T_A = 25°C $T_A = 0^{\circ}C$ 3 T_A = 85°C 2 V_{DD} = 5.5 V PFI = 1.4 V V_{BAT} = GND MSWITCH = GND -2.5 -2 -1.5-1 -0.5 IOH - High-Level Output Current - mA Figure 9

rigur

MINIMUM PULSE DURATION AT PFI THRESHOLD VOLTAGE OVERDRIVE AT PFI 5 $V_{DD} = 1.65 \text{ V}$ 4.6 Minimum Pulse Duration at PFI – μ s 4.2 3.8 3.4 3 2.6 2.2 1.8 1.4 1 0.6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 V_{T(O)} - Threshold Voltage Overdrive at PFI - V Figure 14

www.ti.com 7-Sep-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TPS3606-33DGS	LIFEBUY	VSSOP	DGS	10	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AKE	
TPS3606-33DGSR	LIFEBUY	VSSOP	DGS	10	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AKE	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

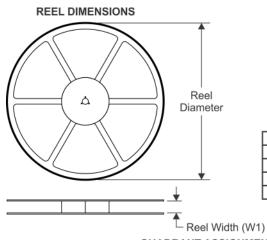
OBSOLETE: TI has discontinued the production of the device.

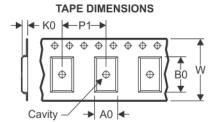
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

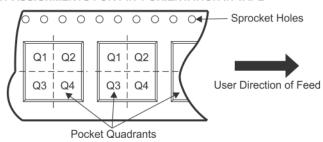
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

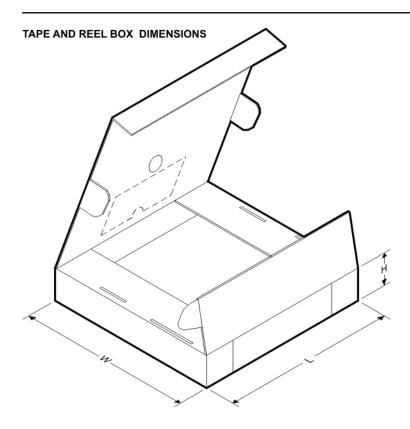
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
K	(0	Dimension designed to accommodate the component thickness
٧	Λ	Overall width of the carrier tape
ΓP	21	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

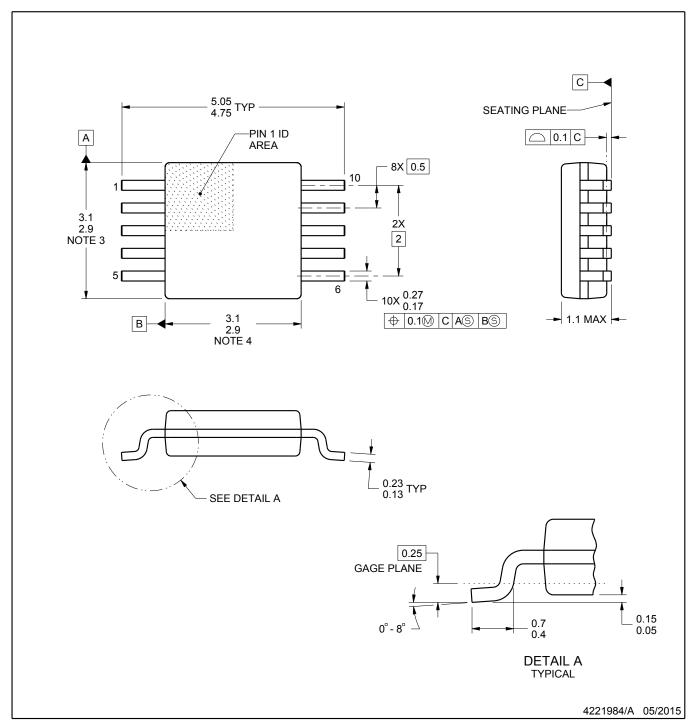


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3606-33DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

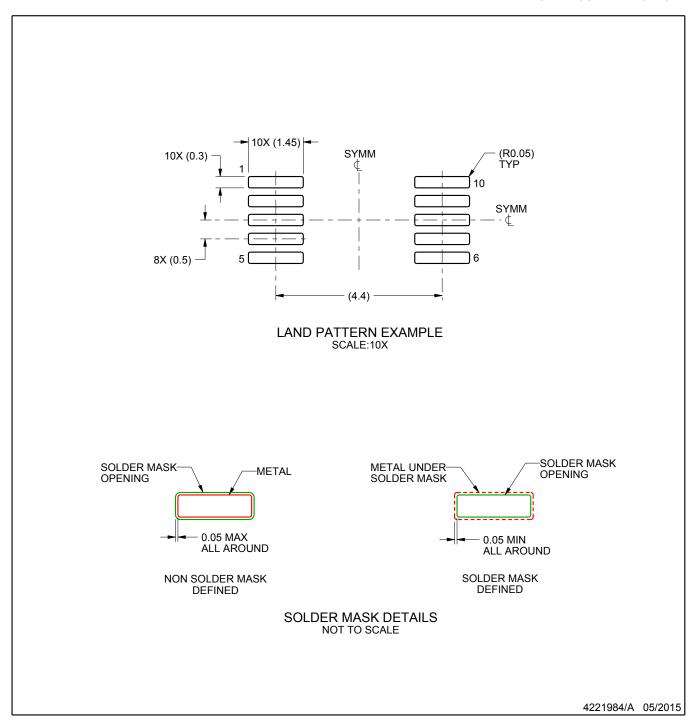


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS3606-33DGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0	

SMALL OUTLINE PACKAGE

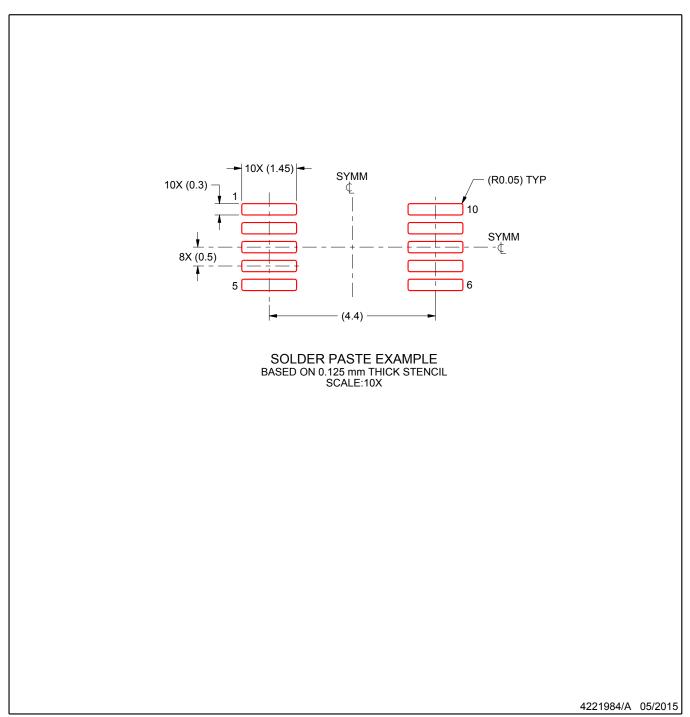
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated