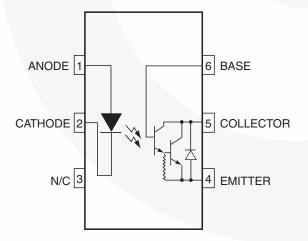


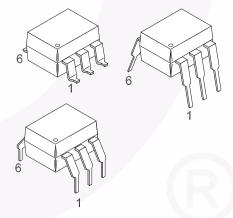
H11G1M, H11G2M, H11G3M High Voltage Photodarlington Optocouplers

Features

- High BV_{CFO}
 - Minimum 100V for H11G1M
 - Minimum 80V for H11G2M
 - Minimum 55V for H11G3M
- High sensitivity to low input current (Min. 500% CTR at I_F = 1mA)
- Low leakage current at elevated temperature (Max. 100µA at 80°C)
- Underwriters Laboratory (UL) recognized File # E90700, Volume 2
- IEC 60747-5-2 approved (ordering option V)


Applications

- CMOS logic interface
- Telephone ring detector
- Low input TTL interface
- Power supply isolation
- Replace pulse transformer


General Description

The H11GXM series are photodarlington-type optically coupled optocouplers. These devices have a gallium arsenide infrared emitting diode coupled with a silicon darlington connected phototransistor which has an integral base-emitter resistor to optimize elevated temperature characteristics.

Schematic

Package Outlines

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

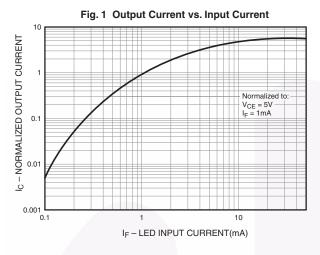
Symbol	Parameter	Value	Units	
TOTAL DEVIC	E			
T _{STG}	Storage Temperature	-40 to +150	°C	
T _{OPR}	Operating Temperature	-40 to +100	°C	
T _{SOL}	Lead Solder Temperature (Wave Solder)	260 for 10 sec	°C	
P_{D}			mW	
	Derate Above 25°C	3.5	mW/°C	
EMITTER				
I _F	Forward Input Current	60	mA	
V _R	Reverse Input Voltage	6.0	V	
I _F (pk)	Forward Current - Peak (1µs pulse, 300pps)	3.0	Α	
P_{D}	LED Power Dissipation @ T _A = 25°C	100	mW	
	Derate Above 25°C	1.8	mW/°C	
DETECTOR				
V _{CEO}	Collector-Emitter Voltage			
	H11G1M	100	V	
	H11G2M	80		
	H11G3M	55		
P_{D}	Photodetector Power Dissipation @ T _A = 25°C	200	mW	
	Derate Above 25°C	2.67	mW/°C	

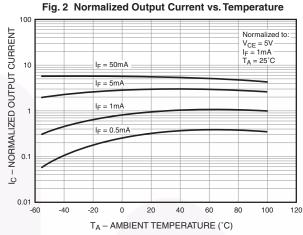
Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise specified.)

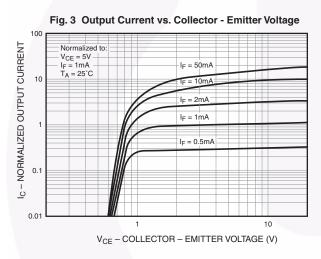
Individual Component Characteristics

Symbol	Characteristic	Test Conditions	Device	Min.	Typ.*	Max.	Unit
EMITTER		-		1		1	
V _F	Forward Voltage	I _F = 10mA	All		1.3	1.50	V
$\frac{\Delta V_{F}}{\Delta T_{A}}$	Forward Voltage Temp. Coefficient		All		-1.8		mV/°C
BV_R	Reverse Breakdown Voltage	I _R = 10μA	All	3.0	25		V
CJ	Junction Capacitance	$V_F = 0V$, $f = 1MHz$	All		50		pF
		V _F = 1V, f = 1MHz			65		
I _R	Reverse Leakage Current	V _R = 3.0V	All		0.001	10	μA
DETECTO	PR					1	
BV _{CEO} Breakdown Voltage Collector to Emitter	_	I _C = 1.0mA, I _F = 0	H11G1M	100			V
	Collector to Emitter		H11G2M	80			
			H11G3M	55			
BV _{CBO} Collector to	Collector to Base	ollector to Base $I_C = 100\mu A$	H11G1M	100			V
			H11G2M	80			
			H11G3M	55			
BV_{EBO}	Emitter to Base		All	7	10		V
0_0	Leakage Current Collector to Emitter	V _{CE} = 80V, I _F = 0	H11G1M			100	nA
		$V_{CE} = 60V, I_F = 0$	H11G2M				
		$V_{CE} = 30V, I_{F} = 0$	H11G3M				
		$V_{CE} = 80V, I_F = 0, T_A = 80^{\circ}C$	H11G1M			100	μΑ
		$V_{CE} = 60V, I_F = 0, T_A = 80^{\circ}C$	H11G2M				

Transfer Characteristics

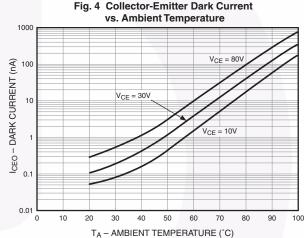
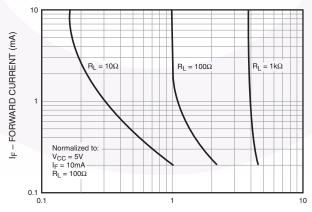
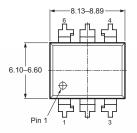

Symbol	Characteristics	Test Conditions	Device	Min.	Typ.*	Max.	Units
EMITTER					A		
CTR	Current Transfer Ratio, Collector to Emitter	I _F = 10mA, V _{CE} = 1V	H11G1M/2M	100 (1000)			mA (%)
		I _F = 1mA, V _{CE} = 5V	H11G1M/2M	5 (500)			
			H11G3M	2 (200)			/
V _{CE(SAT)}	Saturation Voltage	I _F = 16mA, I _C = 50mA	H11G1M/2M		0.85	1.0	V
		$I_F = 1mA$, $I_C = 1mA$	H11G1M/2M		0.75	1.0	
		I _F = 20mA, I _C = 50mA	H11G3M		0.85	1.2	
SWITCHING	TIMES						
t _{ON}	Turn-on Time	$R_L = 100\Omega, I_F = 10mA,$	All		5		μs
t _{OFF}	Turn-off Time	V _{CE} = 5V, f ≤ 30Hz, Pulse Width ≤ 300µs	All		100		μs

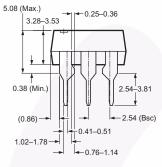

Isolation Characteristics

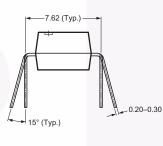

Symbol	Characteristic	Test Conditions	Device	Min.	Тур.*	Max.	Units
V _{ISO}	Isolation Voltage	f = 60Hz, t = 1 sec.	All	7500			V _{AC} PEAK
R _{ISO}	Isolation Resistance	V _{I-O} = 500 VDC	All	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance	f = 1MHz	All		0.2		pF

^{*}All Typical values at T_A = 25°C

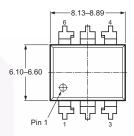
Typical Performance Curves

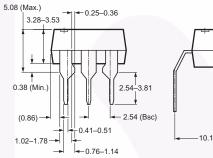




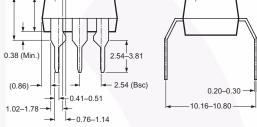

Fig. 5 Input Current vs. Total Switching Speed (Typical Values)

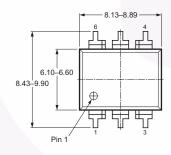


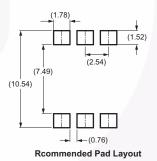
Package Dimensions

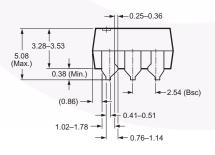

Through Hole

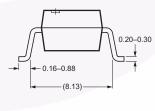




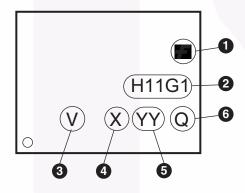

0.4" Lead Spacing





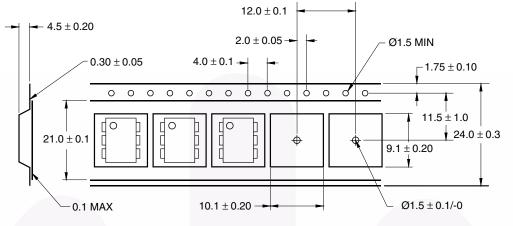


Surface Mount

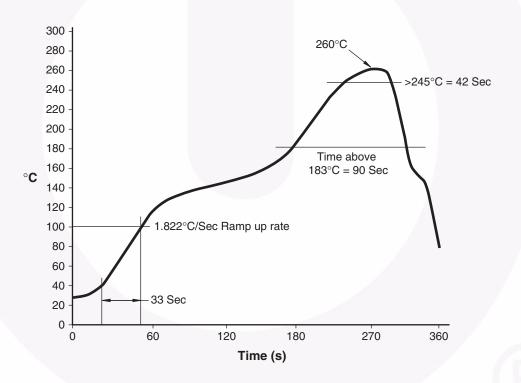


Note: All dimensions in mm.

Ordering Information


Option	Order Entry Identifier (Example)	Description
No option	H11G1M	Standard Through Hole Device
S	H11G1SM	Surface Mount Lead Bend
SR2	H11G1SR2M	Surface Mount; Tape and Reel
Т	H11G1TM	0.4" Lead Spacing
V	H11G1VM	VDE 0884
TV	H11G1TVM	VDE 0884, 0.4" Lead Spacing
SV	H11G1SVM	VDE 0884, Surface Mount
SR2V	H11G1SR2VM	VDE 0884, Surface Mount, Tape and Reel

Marking Information


Definitions				
1	Fairchild logo			
2	Device number			
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	One digit year code, e.g., '7'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			

Carrier Tape Specification

User Direction of Feed _____

Reflow Profile

Dana It NOW

CorePLUS™ CorePOWER™ *CROSSVOLT*™

Current Transfer Logic™ EcoSPARK[®] EfficentMax™ EZSWITCH™ *

EZ™ **F**®

-Fairchild[®]

Fairchild Semiconductor[®] FACT Quiet Series™

FACT[®]
FAST[®]
FastvCore™
FlashWriter[®]*
FPS™
F-PFS™

Global Power ResourceSM

Green FPS™ Green FPS™ e-Series™

GTO™ IntelliMAX™ ISOPLANAR™

MegaBuck™ MICROCOUPLER™

MicroFET™
MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®

PDP SPM™
Power-SPM™
PowerTrench®
PowerXS™

Togrammable Notive Droop

QFET[®] QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SmartMax™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3

SuperSOT™-6
SuperSOT™-8
SupreMOS™
SyncFET™

SYSTEM®
GENERAL
The Power Franchise®

franchise
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TinyWire™
TriFault Detect™
SerDes™

UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™

EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILDIS WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILDIS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are isted by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms