

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

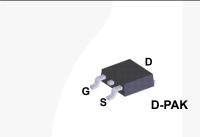
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

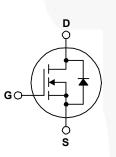
SEMICONDUCTOR®

November 2013

FQD13N06 — N-Channel QFET[®] MOSFET

FQD13N06 N-Channel QFET® MOSFET

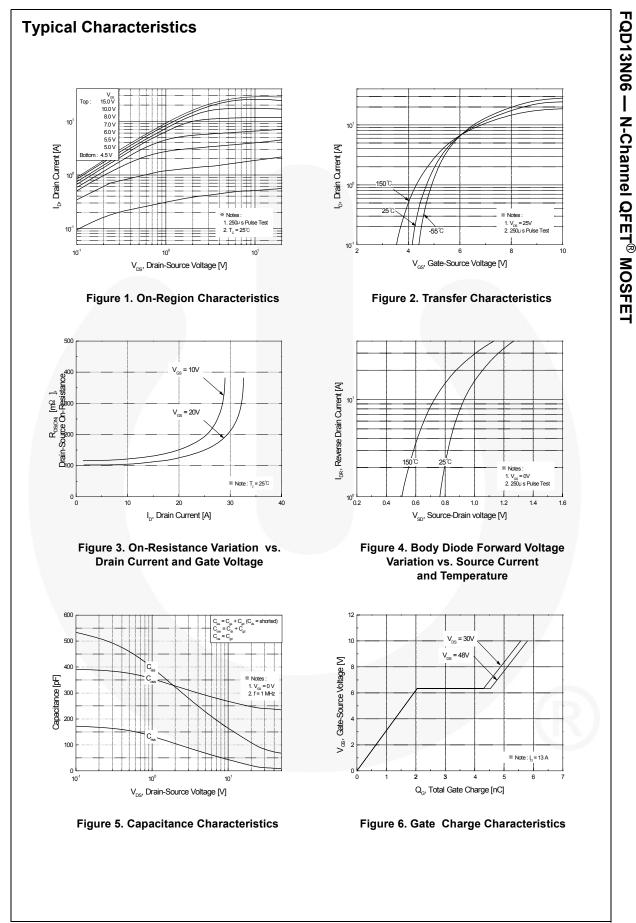

60 V, 10 A, 140 mΩ

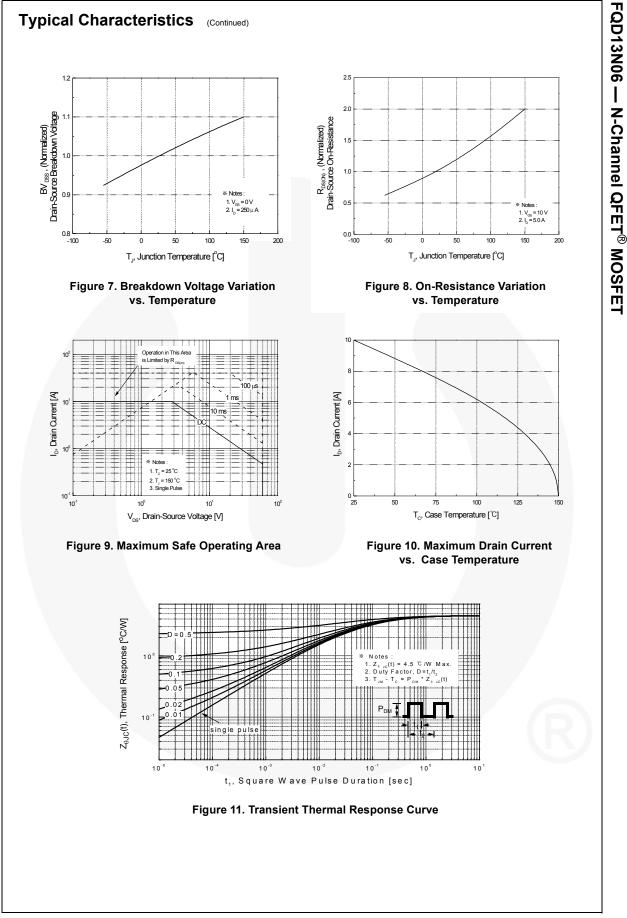

Description

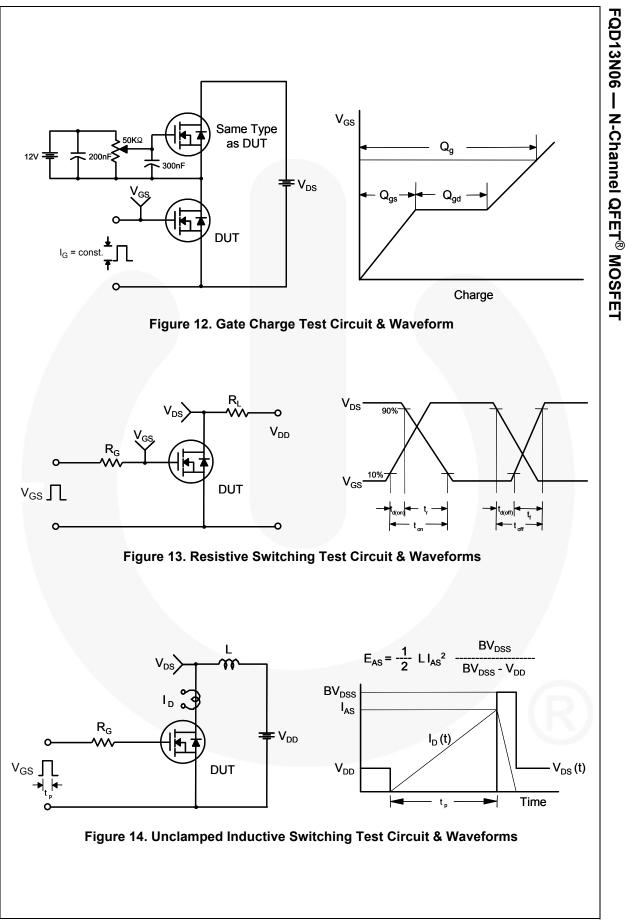
This N-Channel enhancement mode power MOSFET is • 10 A, 60 V, $R_{DS(on)}$ = 140 m Ω (Max.) @ V_{GS} = 10 V, produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state $I_D = 5.0 \text{ A}$ Low Gate Charge (Typ. 5.8 nC) resistance, and to provide superior switching performance • Low Crss (Typ. 15 pF) and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power • 100% Avalanche Tested factor correction (PFC), and electronic lamp ballasts.

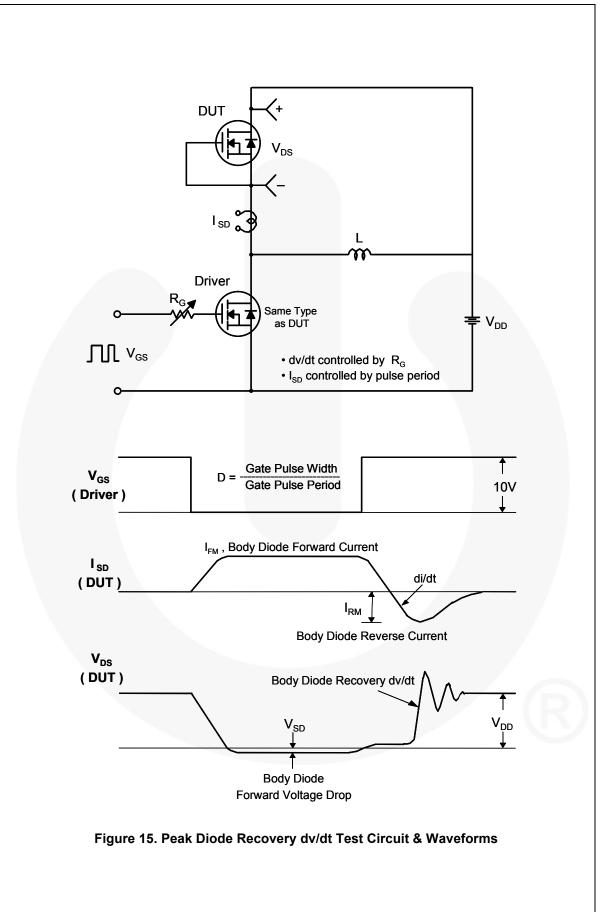
Features

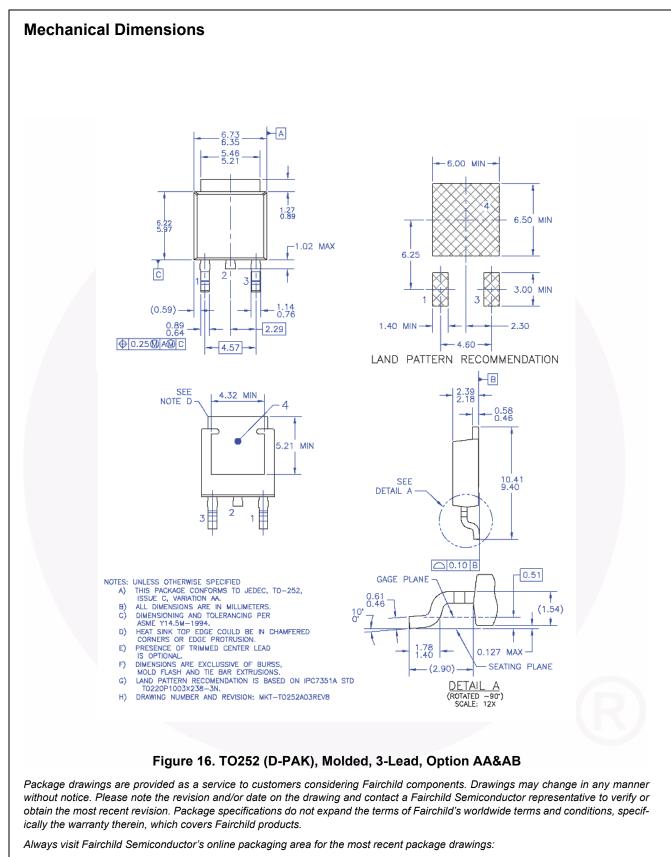
- $I_{D} = 5.0 \text{ A}$


Absolute Maximum Ratings T_c = 25°C unless otherwise noted.


Symbol	Parameter		FQD13N06TM	Unit
V _{DSS}	Drain-Source Voltage		60	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		10	A
	- Continuous (T _C = 100°C)		6.3	A
I _{DM}	Drain Current - Pulsed	(Note 1)	40	A
V _{GSS}	Gate-Source Voltage		± 25	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	85	mJ
I _{AR}	Avalanche Current	(Note 1)	10	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	2.8	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	7.0	V/ns
P _D	Power Dissipation (T _A = 25°C) *		2.5	W
	Power Dissipation (T _C = 25°C)		28	W
	- Derate above 25°C		0.22	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
Τ _L	Maximum lead temperature for soldering, 1/8" from case for 5 seconds		300	°C


Thermal Characteristics


Symbol	Parameter	FQD13N06TM	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max.	4.5	
Р	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	110	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (*1 in ² Pad of 2-oz Copper), Max.	50	


r acterist Drain-Sou	Parameter		PAK C unless oth	Tape and Ree	I 330) mm	16 n	am	
r acterist Drain-Sou Breakdow	Parameter iCS	T _C = 25°0	1						2500 unit
r acterist Drain-Sou Breakdow	Parameter iCS		1	erwise noted					
Drain-Sou Breakdow				Test Conditions		Min.	Тур.	Max.	Unit
Drain-Sou Breakdow									
		е	V _{GS} = (V, I _D = 250 μA		60			V
	n Voltage Temperature t	e	I _D = 250 25°C) μA, Referenced	to		0.06		V/°C
Zero Gate Voltage Drain Current		V _{DS} = 60 V, V _{GS} = 0 V					1	μA	
Zero Gale	Voltage Drain Current	L	-	8 V, T _C = 125°C				10	μΑ
Gate-Body	/ Leakage Current, Fo	rward		25 V, V _{DS} = 0 V				100	nA
Gate-Body	/ Leakage Current, Re	everse	V _{GS} = -	25 V, V _{DS} = 0 V				-100	nA
racterist	ics								
Gate Thre	shold Voltage		V _{DS} = \	/ _{GS} , I _D = 250 μA		2.0		4.0	V
Static Dra	n-Source On-Resistar	nce	V _{GS} = 1	0 V, I _D = 5.0 A			0.11	0.14	Ω
Forward T	ransconductance		V _{DS} = 2	5 V, I _D = 5.0 A			4.9		S
c Charac	teristics								
		-	$V_{} = 25 V V_{} = 0 V$			240	310	pF	
Output Ca	pacitance					-	90	120	pF
Reverse T	ransfer Capacitance						15	20	pF
a Chara	otoriotico								
-									
Turn-On D	ecteristics	-					5	20	ns
Turn-On E	elay Time			0 V, I _D = 6.5 A,			5	20	ns
Turn-On F	elay Time Rise Time	_	V _{DD} = 3 R _G = 28	-			25	60	ns
Turn-On F Turn-Off D	elay Time Rise Time Delay Time	1		-	(Note 4)		25 8		ns
Turn-On F Turn-Off D Turn-Off F	velay Time Rise Time Delay Time all Time		R _G = 25	δΩ	(Note 4)		25	60 25	ns
Turn-On F Turn-Off D Turn-Off F Total Gate	velay Time Rise Time Delay Time all Time		R _G = 28	5 Ω 8 V, I _D = 13 A,	(Note 4)		25 8 15	60 25 40	ns ns ns
Turn-On F Turn-Off D Turn-Off F Total Gate	velay Time kise Time velay Time all Time Charge rce Charge		R _G = 25	5 Ω 8 V, I _D = 13 A,	(Note 4)	 	25 8 15 5.8	60 25 40	ns ns ns nC
Turn-On F Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain	velay Time tise Time elay Time all Time Charge rce Charge n Charge		R _G = 25 V _{DS} = 4 V _{GS} = 1	5 Ω 8 V, I _D = 13 A, 0 V	(Note 4)	 	25 8 15 5.8 2.0	60 25 40 7.5 	ns ns ns nC nC
Turn-On F Turn-Off D Turn-Off F Total Gate Gate-Soun Gate-Drain	Velay Time Nelay Time All Time Charge The Charge The Charge Charge Charge		$R_G = 25$ $V_{DS} = 4$ $V_{GS} = 1$ and Max	5 Ω 8 V, I _D = 13 A, 0 V imum Ratings	(Note 4)	 	25 8 15 5.8 2.0 2.5	60 25 40 7.5 	ns ns nC nC nC
Turn-On F Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain Durce Di Maximum	Velay Time Nelay Time Nelay Time all Time Charge Charge In Charge Ode Characterist Continuous Drain-Sou	urce Dio	$R_{G} = 25$ $V_{DS} = 4$ $V_{GS} = 1$ $M Max$ ode Forwa	S Ω 8 V, I _D = 13 A, 0 V imum Ratings ard Current	(Note 4)	 	25 8 15 5.8 2.0 2.5	60 25 40 7.5 10	ns ns nC nC nC A
Turn-On F Turn-Off D Turn-Off F Total Gate Gate-Soun Gate-Drain Durce Di Maximum Maximum	Velay Time Velay Time Velay Time all Time Charge Charge Charge Ode Characterist Continuous Drain-Sou Pulsed Drain-Source I	urce Dio Diode F	$R_{G} = 25$ $V_{DS} = 4$ $V_{GS} = 1$ Max $V_{GS} = 1$	S Ω $8 V, I_D = 13 A,$ 0 V imum Ratings ard Current urrent	(Note 4)	 	25 8 15 5.8 2.0 2.5	60 25 40 7.5 10 40	ns ns nC nC nC A A
Turn-On F Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain Ource Di Maximum Maximum Drain-Sou	Velay Time Nelay Time Nelay Time all Time Charge Charge In Charge Ode Characterist Continuous Drain-Sou	urce Dio Diode F	$R_{G} = 25$ $V_{DS} = 4$ $V_{GS} = 1$ $M d Max$ $Torward C$ $V_{GS} = 0$	S Ω 8 V, I _D = 13 A, 0 V imum Ratings ard Current	(Note 4)	 	25 8 15 5.8 2.0 2.5	60 25 40 7.5 10	ns ns nC nC nC A
	Gate-Body racteristi Gate Three Static Drai Forward Th c Charac Input Capa Output Ca Reverse T	Gate-Body Leakage Current, Re racteristics Gate Threshold Voltage	Gate-Body Leakage Current, Reverse racteristics Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance c Characteristics Input Capacitance Output Capacitance	Gate-Body Leakage Current, Reverse $V_{GS} = -$ racteristics $V_{DS} = V_{DS} = V_{DS}$ Gate Threshold Voltage $V_{DS} = V_{DS} = V_{DS}$ Static Drain-Source On-Resistance $V_{GS} = 1$ Forward Transconductance $V_{DS} = 2$ c Characteristics Input Capacitance Output Capacitance $V_{DS} = 2$	Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu \text{A}$ Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 5.0 \text{ A}$ Forward Transconductance $V_{DS} = 25 \text{ V}, I_D = 5.0 \text{ A}$ C CharacteristicsInput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ Reverse Transfer Capacitance	Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu \text{A}$ Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 5.0 \text{ A}$ Forward Transconductance $V_{DS} = 25 \text{ V}, I_D = 5.0 \text{ A}$ c Characteristics Input CapacitanceInput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ Output Capacitance $f = 1.0 \text{ MHz}$	Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu \text{A}$ 2.0Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 5.0 \text{ A}$ Forward Transconductance $V_{DS} = 25 \text{ V}, I_D = 5.0 \text{ A}$ c Characteristics Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ racteristics Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu \text{A}$ 2.0 Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 5.0 \text{ A}$ 0.11 Forward Transconductance $V_{DS} = 25 \text{ V}, I_D = 5.0 \text{ A}$ 4.9 c Characteristics Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ 240	Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ 0.00 Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu A$ 2.0 4.0 Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 5.0 \text{ A}$ 0.11 0.14

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT252-003

FQD13N06 — N-Channel QFET[®] MOSFET

Rev. 166

Preliminary

No Identification Needed

Obsolete

First Production

Full Production

Not In Production

notice to improve design.

Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC