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INTRODUCTION 

The EVAL-PRAOPAMP-2RZ, EVAL-PRAOPAMP-2RMZ, and 
EVAL-PRAOPAMP-2CPZ are universal precision evaluation 
boards that accommodate dual op amps in 8-pin SOIC,  
MSOP, and LFCSP packages, respectively. For the exposed pad 
connection for the LFCSP package, see the appropriate product 
data sheet. 

These PRAOPAMP evaluation boards provide multiple choices 
and extensive flexibility for different application circuits and 
configurations. 

These boards are not intended to be used with high frequency 
components or high speed amplifiers. However, they provide 
the user with many combinations for various circuit types, 
including active filters, instrumentation amplifiers, composite 
amplifiers, and external frequency compensation circuits. 
Several examples of application circuits are provided in this 
application note. 

TWO STAGE BAND-PASS FILTER 
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Figure 1. KRC Filter 

The low offset voltage and high CMRR makes the ADA4077-2  
a great choice for precision filters, such as the KRC filter shown 
in Figure 1.  

This particular filter implementation offers the flexibility to 
tune the gain and the cut-off frequency independently. 

Since the common-mode voltage into the amplifier varies  
with the input signal in the KRC filter circuit, a high CMRR 
amplifier, such as the ADA4077-2, is required to minimize 
distortion. Furthermore, the low offset voltage of the ADA4077-2 
allows a wider dynamic range when the circuit gain is chosen to 
be high. 

The circuit shown in Figure 1 consists of two stages. The first 
stage is a simple high-pass filter with a corner frequency, fC, of 

C1C2R1R2π2
1

 (1) 

and  

R2

R1
KQ =  (2) 

where K is the dc gain. 

Choosing equal capacitor values minimizes the sensitivity and 
simplifies the expression for fC to 

R1R2Cπ2
1

 (3) 

The value of Q determines the peaking of the gain vs. frequency 
(generally ringing in the time domain). Commonly chosen 
values for Q are near unity. 

Setting Q = 1/√2 yields minimum gain peaking and minimum 
ringing. Use Equation 3 to determine the values for R1 and R2. 
For example, set Q = 1/√2 and R1/R2 = 2 in the circuit example, 
and pick R1 = 5 kΩ and R2 = 10 kΩ for simplicity. The second 
stage is a low-pass filter whose corner frequency can be deter-
mined in a similar fashion. 

R3 = R4 = R 

C3C4R
fC ×
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and 
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HALF WAVE, FULL WAVE RECTIFIER 

Rectifying circuits are used in a multitude of applications. One 
of the most popular uses is in the design of regulated power 
supplies where a rectifier circuit is used to convert an input 
sinusoid to a unipolar output voltage. There are some potential 
problems for amplifiers used in this manner.  

When the input voltage VIN is negative, the output is zero. 
When the magnitude of VIN is doubled at the input of the op 
amp, this voltage could exceed the power supply voltage which 
would damage the amplifiers permanently. The op amp must 
come out of saturation when VIN is negative. This delays the 
output signal because the amplifier needs time to enter its  
linear region.  

The ADA4610-2 has a very fast overdrive recovery time, which 
makes it a great choice for rectification of transient signals. The 
symmetry of the positive and negative recovery time is also very 
important in keeping the output signal undistorted. 
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Figure 2. Half Wave and Full Wave Rectifier 
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Figure 3. Half Wave Rectifier Signal (Output A) 
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Figure 4. Full Wave Rectifier Signal (Output B) 

Figure 2 is a typical representation of a rectifier circuit. The first 
stage of the circuit is a half wave rectifier. When the sine wave 
applied at the input is positive, the output follows the input 
response. During the negative cycle of the input, the output tries 
to swing negative to follow the input, but the power supplies 
restrains it to zero. Similarly, the second stage is a follower 
during the positive cycle of the sine wave and an inverter during 
the negative cycle. Figure 3 and Figure 4 represents the signal 
response of the circuit at Output A and Output B, respectively. 

HIGH GAIN COMPOSITE AMPLIFIER 
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Figure 5. High Gain Composite Amplifier 

A composite amplifier can provide a very high gain in appli-
cations where high closed-loop dc gain is needed. The high gain 
achieved by the composite amplifier comes at the expense of a 
loss in phase margin. 

Placing a small capacitor, CF, in the feedback loop and in 
parallel with R2 improves the phase margin. For the circuit  
of Figure 5, picking a CF = 50 pF yields a phase margin of  
about 45°. 
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Figure 6. Low Power Composite Amplifier 

A composite amplifier can be used to optimize the dc and ac 
characteristics. Figure 6 shows an example using the AD8657, 
which offers many circuit advantages. The bandwidth is 
increased substantially and the input offset voltage and noise  
of the AD8657 becomes insignificant because they are divided 
by the high gain of the amplifier. The circuit offers a high 
bandwidth, a high output current, and a very low power 
consumption of less than 100 μA. 

EXTERNAL COMPENSATION TECHNIQUES 

Series Resistor Compensation 

The use of external compensation networks may be required  
to optimize certain applications. Figure 7 shows a typical 
representation of a series resistor compensation to stabilize an 
op amp driving capacitive loads. The stabilizing effect of the 
series resistor can be thought of as a means to isolate the op 
amp output and the feedback network from the capacitive load. 
The required amount of series resistance depends on the part 
used, but values of 5 Ω to 50 Ω are usually sufficient to prevent 
local resonance. The disadvantage of this technique is a 
reduction in gain accuracy and extra distortion when driving 
nonlinear loads. 
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Figure 7. Series Resistor Compensation 
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Figure 8. Capacitor Load Drive Without Resistor 
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Figure 9. Capacitor Load Drive with Resistor 
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SNUBBER NETWORK 

Another way to stabilize an op amp driving a capacitive load  
is through the use of a snubber as shown in Figure 10.  

This method has the significant advantage of not reducing the 
output swing because there is no isolation resistor in the signal 
path. Also, the use of the snubber does not degrade the gain 
accuracy or cause extra distortion when driving a nonlinear 
load. The exact RS and CS combination can be determined 
experimentally. 
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Figure 10. Snubber Network
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Figure 11. Capacitor Load Drive Without Snubber 
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Figure 12. Capacitor Load Drive with Snubber 
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Figure 13. Dual Universal Precision Op Amp Evaluation Board Electrical Schematic 
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Figure 14. Dual Universal Precision Op Amp Evaluation Board 
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Figure 15. Dual SOIC Layout Patterns 
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