

Four Output Differential Fanout Buffer for PCI Express Gen 1 & 2

ICS9DBL411A

Recommended Application:

PCI-Express fanout buffer

Output Features:

- 4 low power differential output pairs
- Individual OE# control of each output pair

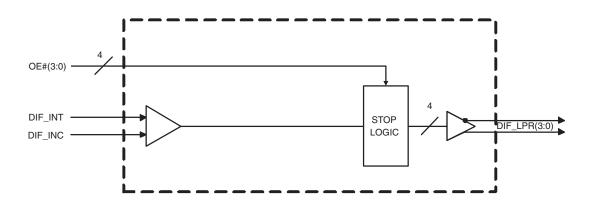
Key Specifications:

- Output cycle-cycle jitter < 25ps additive
- Output to output skew: < 50ps

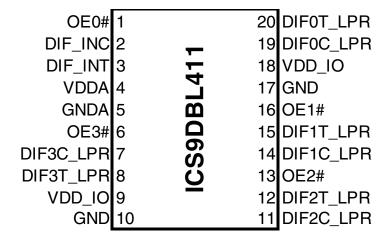
Features/Benefits:

- Low power differential fanout buffer for PCI-Express and CPU clocks
- 20-pin MLF or TSSOP packaging

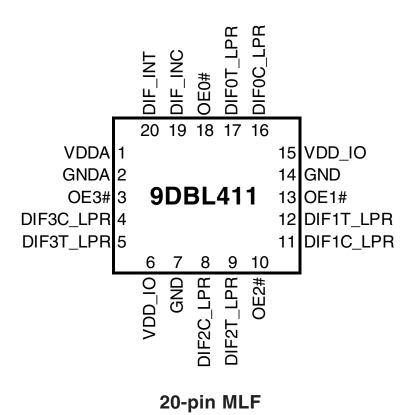
General Description:


The ICS9DBL411 is a 4 output lower power differential buffer. Each output has its own OE# pin. It has a maximum input frequency of 400 MHz.

Power Groups


Pin Numb	per (TSSOP)	Description		
VDD	GND	- Description		
9,18	10,17	VDD_IO for DIF(3:0)		
4	5	3.3V Analog VDD & GND		

Pin Nun	nber (MLF)	Description	
VDD	GND	Description	
6,15	7,14	VDD_IO for DIF(3:0)	
1	2	3.3V Analog VDD & GND	


Funtional Block Diagram

Pin Configuration

20-pin TSSOP

TSSOP Pin Description

PIN # (TSSOP)	PIN NAME	PIN TYPE	DESCRIPTION
-1	OE0#	IN	Output Enable for DIF0 output. Control is as follows:
ļ	OE0#	IIN	0 = enabled, 1 = Low-Low
2	DIF_INC	IN	Complement side of differential input clock
3	DIF_INT	IN	True side of differential input clock
4	VDDA	PWR	3.3V Power for the Analog Core
5	GNDA	GND	Ground for the Analog Core
6	OE3#	IN	Output Enable for DIF3 output. Control is as follows:
0	OE3#	IIN	0 = enabled, 1 = Low-Low
7	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
8	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
9	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
10	GND	GND	Ground pin
11	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
12	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
10	050#	IN	Output Enable for DIF2 output. Control is as follows:
13	OE2#	IIN	0 = enabled, 1 = Low-Low
14	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
15	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
10	054#	IN	Output Enable for DIF1 output. Control is as follows:
16	OE1#	IIN	0 = enabled, 1 = Low-Low
17	GND	GND	Ground pin
18	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
19	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
20	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)

MLF Pin Description

PIN # (MLF)	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDA	PWR	3.3V Power for the Analog Core
2	GNDA	GND	Ground for the Analog Core
3	OE3#	IN	Output Enable for DIF3 output. Control is as follows: 0 = enabled, 1 = Low-Low
4	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
5	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
6	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
7	GND	GND	Ground pin
8	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
9	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
10	OE2#	IN	Output Enable for DIF2 output. Control is as follows: 0 = enabled, 1 = Low-Low
11	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
12	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
13	OE1#	IN	Output Enable for DIF1 output. Control is as follows: 0 = enabled, 1 = Low-Low
14	GND	GND	Ground pin
15	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
16	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
17	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
18	OE0#	IN	Output Enable for DIF0 output. Control is as follows: 0 = enabled, 1 = Low-Low
19	DIF_INC	IN	Complement side of differential input clock
20	DIF_INT	IN	True side of differential input clock

Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Maximum Supply Voltage	VDDA	Core Supply Voltage		4.6	٧	1,7
Maximum Supply Voltage	VDD_IO	Low-Voltage Differential I/O Supply	0.99	3.8	V	1,7
Maximum Input Voltage	V_{IH}	3.3V LVCMOS Inputs		4.6	V	1,7,8
Minimum Input Voltage	V_{IL}	Any Input	Vss - 0.5		V	1,7
Storage Temperature	Ts	-	-65	150	°C	1,7
Input ESD protection	ESD prot	Human Body Model	2000		٧	1,7

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Ambient Operating Temp	Tambient	-	0	70	°C	1
Supply Voltage	VDDxxx	Supply Voltage	3.135	3.465	V	1
Supply Voltage	VDDxxx_IO	Low-Voltage Differential I/O Supply	0.99	3.465	V	1
Input High Voltage	V_{IHSE}	Single-ended inputs	2	$V_{DD} + 0.3$	V	1
Input Low Voltage	V _{ILSE}	Single-ended inputs	V _{SS} - 0.3	0.8	V	1
Differential Input High Voltage	V _{IHDIF}	Differential inputs (single-ended measurement)	600	1.15	V	1
Differential Input Low Voltage	V_{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 0.3	300	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4	8	V/ns	2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	5	uA	1
	I _{DD_3.3V}	3.3V supply		25	mA	1
Operating Supply Current	I _{DD IO+100M}	VDD_IO supply @ fOP = 100MHz		15	mA	1
	I _{DD IO 400M}	VDD_IO supply @ fOP = 400MHz		54	mA	1
Standby Current	I _{DD_SB33}	3.3V supply, Input stopped, OE# pins all high		1	mA	1
	I _{DD_SBIO}	VDD_IO supply, Input stopped		0.1	mA	1
Input Frequency	F _i	V _{DD} = 3.3 V	33	400	MHz	2
Pin Inductance	L _{nin}			7	nΗ	1
Input Capacitance	C_{IN}	Logic Inputs	1.5	5	pF	1
при Сараскансе	C _{OUT}	Output pin capacitance		6	рF	1
OE# latency	T _{OE#LAT}	Number of clocks to enable or disable output from assertion/deassertion of OE#	1	3	periods	1
Tdrive_OE#	T _{DROE#}	Output enable after OE# de-assertion		10	ns	1
Tfall_OE#	T_{FALL}	Fall/rise time of OE# inputs		5	ns	1
Trise_OE#	T _{RISE}			5	ns	1

AC Electrical Characteristics - DIF Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	1	2.5	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	1	2.5	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement		20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot		1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300		mV	1
Differential Voltage Swing	V_{SWING}	Differential Measurement	1200		mV	1
Crossing Point Voltage	V _{XABS}	Single-ended Measurement	300	550	mV	1,3,4
Crossing Point Variation	V _{XABSVAR}	Single-ended Measurement		140	mV	1,3,5
	D _{CYCDIS0}	Differential Measurement, fIN<=100MHz		0.5	%	1,6
Duty Cycle Distortion	D _{CYCDIS1}	Differential Measurement 100MHz < flN<=267MHz		+5	%	1,6
	D _{CYCDIS2}	Differential Measurement, fIN>267MHz		+7	%	1,6
DIF Jitter - Cycle to Cycle	DIFJ _{C2C}	Differential Measurement, Additive		25	ps	1
DIF[3:0] Skew	DIF _{SKEW}	Differential Measurement		50	ps	1
Propagation Delay	t _{PD}	Input to output Delay	2.5	3.5	ns	1
PCIe Gen2 Phase Jitter - Addtive	t _{phase_addHl}	1.5MHz < fIN < Nyquist (50MHz)	_	0.8	ps rms	1
PCle Gen2 Phase Jitter - Addtive	t _{phase_addLO}	10KHz < fIN < 1.5MHz		0.1	ps rms	1

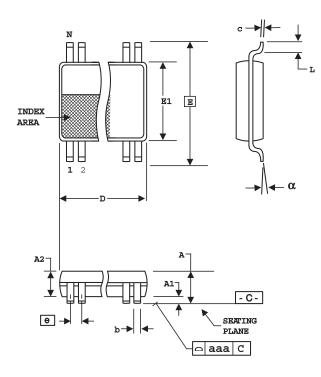
Notes on Electrical Characteristics:

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)


⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

 $^{^{\}rm 6}$ Tthis is the figure refers to the maximum distortion of the input wave form.

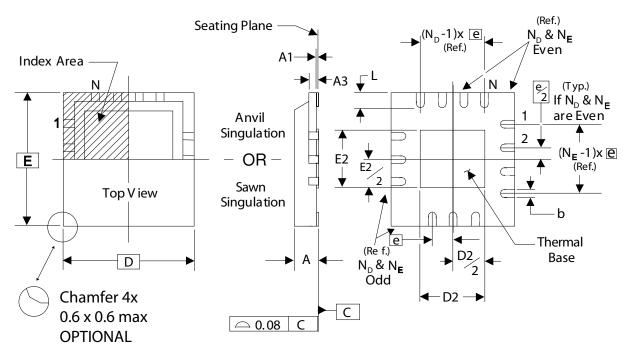
⁷ Operation under these conditions is neither implied, nor guaranteed.

⁸ Maximum input voltage is not to exceed maximum VDD

20-pin TSSOP Package Drawing and Dimensions

20-Lead, 4.40 mm. Body, 0.65 mm. Pitch TSSOP (173 mil) (25.6 mil)

	,.,	O 11111)	(23.0 11111)	
	In Milli	meters	In In	ches
SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS
	MIN	MAX	MIN	MAX
Α		1.20		.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.19	0.30	.007	.012
С	0.09	0.20	.0035	.008
D	SEE VARIATIONS		SEE VAF	RIATIONS
E	6.40 BASIC		0.252	BASIC
E1	4.30	4.50	.169	.177
е	0.65 BASIC		0.0256	BASIC
L	0.45	0.75	.018	.030
N	SEE VAF	RIATIONS	SEE VARIATIONS	
а	0°	8°	0°	8°
aaa		0.10		.004


VARIATIONS

N	D mm.		D (ii	D (inch)	
IN	MIN	MAX	MIN	MAX	
20	6.40	6.60	.252	.260	

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

20-pin MLF Package Drawing and Dimensions

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

SYMBOL	MIN.	MAX.	
Α	0.8	1.0	
A1	0	0.05	
A3	0.20 Re	ference	
b	0.18	0.3	
е	0.50 BASIC		

DIMENSIONS

SYMBOL	ICS 20L TOLERANCE	
N	20	
N_D	5	
N _E	5	
D x E BASIC	4.00 x 4.00	
D2 MIN. / MAX.	2.00 / 2.25	
E2 MIN. / MAX.	2.00 / 2.25	
L MIN. / MAX.	0.45 / 0.65	

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBL411AKLF	Tubes	20-pin MLF	0 to +70°C
9DBL411AKLFT	Tape and Reel	20-pin MLF	0 to +70°C
9DBL411AGLF	Tubes	20-pin TSSOP	0 to +70°C
9DBL411AGLFT	Tape and Reel	20-pin TSSOP	0 to +70°C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

[&]quot;A" is the device revision designator (will not correlate to the datasheet revision).

Revision History

Rev.	Issue Date	Description	Page #
0.1	8/1/2006	Initial Release.	-
0.2	9/22/2006	Updated MLF Package Dimensions.	8
		1. Updated electrical characteristics - additive jitter, cycle-to-cycle, tpd, skews,	
		slew rates, Idd, etc.	
		2. Corrected power grouping table for TSSOP pkg	
Α	7/31/2007	3. Final Release	1,5,6
		1. Highlighted that V _{IHDIF} and V _{ILDIF} are single ended measurments.	
		2. Corrected VSWING paramater from 300mV to 1200mV.	
В	2/21/2008	3. Updated duty cycle distortion table with a 3rd figure for speeds <=100MHz.	5
С	6/28/2012	Typo for "Differential Input Low Voltage" units; changed "V" to "mV"	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/