

74VCX38 Low Voltage Quad 2-Input NAND Gate with Open Drain Outputs and 3.6V Tolerant Inputs and Outputs

Features

- 1.2V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- ∎ t_{PD}:
- 2.8ns max. for 3.0V to 3.6V V_{CC}
- Power-Off high impedance inputs and outputs
- Static Drive (I_{OL}):
 - +24mA @ 3.0V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Latchup performance exceeds JEDEC 78 conditions
- ESD performance:
 - Human body model > 2000V
- Machine model > 250V
- Leadless DQFN package

Ordering Information

General Description

The VCX38 contains four 2-input NAND gates with open drain outputs. This product is designed for low voltage (1.2V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V.

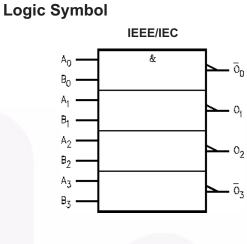
The VCX38 is fabricated with advanced CMOS technology to achieve high-speed operation while maintaining CMOS low power dissipation.

_		
Order Number	Package Number	Package Description
74VCX38M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VCX38BQX ⁽¹⁾	MLP14A	14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.0mm
74VCX38MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Note:

1. DQFN package available in Tape and Reel only.

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.


All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagrams Pin Assignments for SOIC and TSSOP 14 $v_{\rm CC}$ Aa 13 Α2 B₀ 12 ō B_2 11 ō2 Α₁ 10 В A₃ 9 $\overline{0}_1$ B₃ 8 $\overline{0}_3$ GND Pad Assignments for DQFN A0 VCC 1 14 (13 A2 Bo 2 ō₀ (12 B2 3 (11 0₂ A1 4 (10 A3 B₁ 5 $\overline{O}_1 \overline{O}_1$ 9 B3 7 8

GND \overline{O}_3

(Top View)

Pin Description

Pin Names	Description
A _n , B _n	Inputs
\overline{O}_n	Outputs

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +4.6V
VI	DC Input Voltage	-0.5V to 4.6V
Vo	Output Voltage ⁽²⁾	-0.5V to 4.6V
I _{IK}	DC Input Diode Current, V _I < 0V	–50mA
I _{ОК}	DC Output Diode Current, V _O < 0V	–50mA
I _{OL}	DC Output Source/Sink Current	+50mA
I _{CC} or GND	Supply Pin	±100mA
T _{STG}	Storage Temperature Range	–65°C to +150°C

Note:

2. I_O Absolute Maximum Rating must be observed.

Recommended Operating Conditions⁽³⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating		
V _{CC}	Power Supply Operating	1.2V to 3.6V		
VI	Input Voltage	-0.3V to 3.6V		
Vo	Output Voltage	0V to V _{CC}		
I _{OL}	Output Current			
	V _{CC} = 3.0V to 3.6V	±24mA		
	V _{CC} = 2.3V to 2.7V ±18m			
	V _{CC} = 1.65V to 2.3V ±6mA			
	V _{CC} = 1.4V to 1.6V ±2			
	$V_{CC} = 1.2V$	± 100µA		
T _A	Free Air Operating Temperature	-40°C to +85°C		
$\Delta t / \Delta V$	Minimum Input Edge Rate, $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$			

Note:

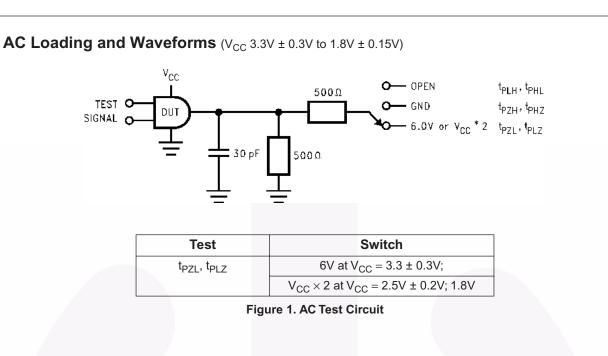
3. Floating or unused inputs must be held HIGH or LOW

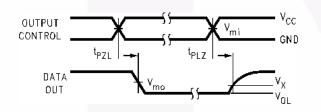
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Max	Units
V _{IH}	HIGH Level Input Voltage	2.7–3.6		2.0		V
		2.3–2.7	-	1.6		
		1.65–2.3	-	$0.65 \times V_{CC}$		
		1.4–1.6		$0.65 \times V_{CC}$		
		1.2		$0.65 \times V_{CC}$		1
V _{IL}	LOW Level Input Voltage	2.7–3.6			0.8	V
		2.3–2.7			0.7	
		1.65–2.3			$0.35 imes V_{CC}$	
		1.4–1.6			$0.35 imes V_{CC}$	1
		1.2			$0.05 \times V_{CC}$	
V _{OL}	LOW Level Output Voltage	2.7–3.6	I _{OL} = 100μA		0.2	V
		2.7	$I_{OL} = 12 \text{mA}$		0.4	1
		3.0	I _{OL} = 18mA		0.4	1
		3.0	$I_{OL} = 24 \text{mA}$		0.55	1
		2.3–2.7	I _{OL} = 100μA		0.2	1
		2.3	$I_{OL} = 12 \text{mA}$		0.4	
		2.3	I _{OL} = 18mA		0.6	
		1.65–2.3	$I_{OL} = 100 \mu A$		0.2	
		1.65	$I_{OL} = 6mA$		0.3	
		1.4–1.6	$I_{OL} = 100 \mu A$		0.2	
		1.4	$I_{OL} = 2mA$		0.35	
		1.2	$I_{OL} = 100 \mu A$		0.05	
I _I	Input Leakage Current	1.2–3.6	$0 \le V_I \le 3.6V$		±5.0	μA
I _{OFF}	Power-Off Leakage Current	0	$0 \leq (V_I, V_O) \leq 3.6V$		10.0	μA
I _{CC}	Quiescent Supply Current	1.2–3.6	$V_I = V_{CC}$ or GND		20.0	μA
			$V_{CC} \le (V_I) \le 3.6V$		±20.0	
ΔI_{CC}	Increase in I _{CC} per Input	2.7–3.6	$V_{IH} = V_{CC} - 0.6V$		750	μA
I _{OHZ}	Off State Current	1.2–3.6	V _O = 3.6		10.0	μA

				T _A = -4 +85	40°C to 5°C		Figure
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Max.	Units	Number
t _{PZL} , t _{PZH}	Propagation Delay	3.3 ± 0.3	$C_L = 30 pF, R_L = 500 \Omega$	0.6	2.8	ns	Fig. 1
		2.5 ± 0.2		0.8	3.7		Fig. 2
		1.8 ± 0.15		1.0	6.7		
		1.5 ± 0.1	$C_L = 15 pF, R_L = 2k\Omega$	1.0	13.4		Fig. 3
		1.2			33.5		Fig. 4
t _{OSHL} , t _{OSLH}	Output to Output	3.3 ± 0.3	$C_L = 30 pF, R_L = 500 \Omega$		0.5	ns	
	Skew ⁽⁵⁾	2.5 ± 0.2			0.5		
		1.8 ± 0.15			0.75		
		1.5 ± 0.1	$C_L = 15 pF, R_L = 2k\Omega$		1.5		
		1.2			1.5		

Note:

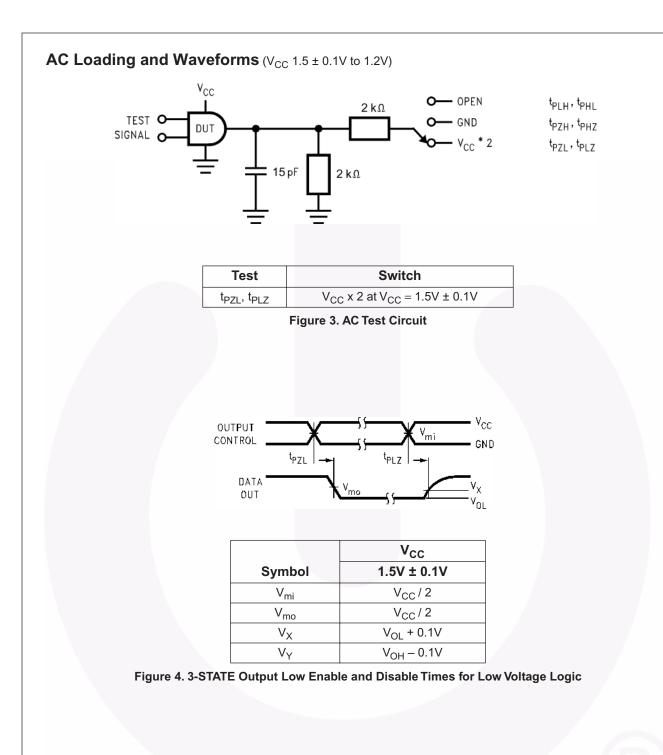
4. For $C_L = 50 pF$, add approximately 300ps to the AC Maximum specification.


 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics

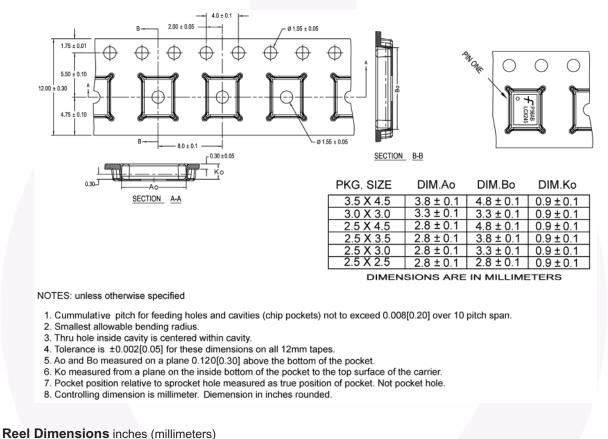
				$T_A = 25^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Typical	Unit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	1.8	$C_L = 30 pF, V_{IH} = V_{CC},$	0.25	V
		2.5	$V_{IL} = 0V$	0.6	
		3.3		0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	1.8	$C_L = 30 pF$, $V_{IH} = V_{CC}$,	-0.25	V
		2.5	$V_{IL} = 0V$	-0.6	
		3.3		-0.8	

Capacitance


			T _A = +25°C	
Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	6.0	pF
C _{OUT}	Output Capacitance	V_{I} = 0V or $V_{\text{CC}}, V_{\text{CC}}$ = 1.8V, 2.5V or 3.3V	7.0	pF
C _{PD}	Power Dissipation Capacitance	$V_{\rm I}$ = 0V or V_{CC},f = 10MHz, V_{CC} = 1.8V, 2.5V or 3.3V	20.0	pF

	V _{cc}				
Symbol	3.3V ± 0.3V	2.5V ± 0.2V	1.8V ± 0.15V		
V _{mi}	1.5V	V _{CC} / 2	V _{CC} / 2		
V _{mo}	1.5V	V _{CC} / 2	V _{CC} / 2		
V _x	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V		

Figure 2. Waveform for Open Drain, Inverting and Non-inverting Functions



Tape and Reel Specification

Tape Format for DQFN

Package Designator	Tape Section	Number of Cavities	Cavity Status	Cover Tape Status
BQX	Leader (Start End)	125 (Typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Тур.)	Empty	Sealed

Tape Dimensions inches (millimeters)

W1 Measured at Hub W2 max Measured at Hub B Min Dia C Dia D Dia A Dia N min max DETAIL AA See detail AA W1 W2 **Tape Size** Α В С D Ν 13.0 (330.0) 0.059 (1.50) 0.512 (13.00) 0.795 (20.20) 2.165 (55.00) 0.488 (12.4) 0.724 (18.4) 12mm

Physical Dimensions

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Figure 6. 14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.0mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Figure 7. 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

SEMICONDUCTOR

ACEx®

Build it Now™ CorePLUS™ *CROSSVOLT*™ CTL™ Current Transfer Logic™ EcoSPARK[®] EZSWITCH™ *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FlashWriter[®]* FRFET® Global Power ResourceSM Green FPS™ Green FPS™e-Series™ GTO™ i-Lo™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ **OPTOLOGIC[®]** OPTOPLANAR®

FPS™

PDP-SPM™ Power220[®] POWEREDGE[®] Power-SPM™ PowerTrench[®] Programmable Active Droop™ **OFFT**[®] QS™ QT Optoelectronics[™] Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™3 SuperSOT™6 SuperSOT™-8

SupreMOS™ SyncFET™ GENERAL ® The Power Franchise[®] franchise TinyBoost™ TinyBuck™ TinyLogic® **TINYOPTO™** TinyPower™ TinyPWM™ TinyWire™ SerDes™ UHC® Ultra FRFET™ UniFET™ VCX™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make abarges at any time without paties to improve design