February 2014 # FSB70325 # Motion SPM® 7 Series ### **Features** - UL Certified No. E209204 (UL1557) - · High Performance PQFN Package - 250 V $R_{DS(on)}$ = 1.4 $\Omega(Max)$ FRFET MOSFET 3-Phase Inverter with Gate Drivers and Protection - Separate Open-Source Pins from Low-Side MOSFETs for Three-Phase Current-Sensing - Active-HIGH Interface, Works with 3.3 / 5 V Logic, Schmitt-trigger Input - · Optimized for Low Electromagnetic Interference - HVIC Temperature-Sensing Built-In for Temperature Monitoring - HVIC for Gate Driving with Under-Voltage Protection and Interlock Function - Isolation Rating: 1500 V_{rms} / min. - · Moisture Sensitive Level (MSL) 3 - RoHS Compliant 3-Phase Inverter Driver for Small Power AC Motor Drives ### **Related Source** **Application** - AN-9077 Motion SPM® 7 Series User's Guide - AN-9078 Surface Mount Guidelines for Motion SPM® 7 Series ### **General Description** The FSB70325 is an advanced Motion SPM® 7 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC and PMSM motors. These modules integrate optimized gate drive of the built-in MOSFETs (FRFET® technology) to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts, thermal monitoring, fault reporting and interlock function. The built-in one HVIC translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's internal MOSFETs. Separate open-souce MOSFET terminals are available for each phase to support the widest variety of control algorithms. # **Package Marking & Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | | |-----------------------|----------|---------|-----------|------------|------------|--| | FSB70325 | FSB70325 | PQFN27A | 13" 24 mm | | 1000 units | | # **Absolute Maximum Ratings** Inverter Part (each MOSFET unless otherwise specified.) | Symbol | Parameter | Conditions | Rating | Unit | |--------------------|---------------------------------------|---|--------|------| | V _{DSS} | Drain-Source Voltage of Each MOSFET | | 250 | V | | *I _{D 25} | Each MOSFET Drain Current, Continuous | T _{CB} = 25°C (1st Notes 1) | 4.1 | Α | | *I _{D 80} | Each MOSFET Drain Current, Continuous | $T_{CB} = 80^{\circ}C$ | 3.1 | Α | | *I _{DP} | Each MOSFET Drain Current, Peak | T _{CB} = 25°C, PW < 100 μs | 8.2 | Α | | *P _D | Maximum Power Dissipation | T _{CB} = 25°C, For Each MOSFET | 49 | W | ### Control Part (each HVIC unless otherwise specified.) | Symbol | Parameter | Conditions | Rating | Unit | |------------------|-------------------------------|---|------------------------------|------| | V _{DD} | Control Supply Voltage | Applied Between V _{DD} and COM | 20 | V | | V _{BS} | High-side Bias Voltage | Applied Between V _B and V _S | 20 | V | | V _{IN} | Input Signal Voltage | Applied Between IN and COM | -0.3 ~ V _{DD} + 0.3 | V | | V _{FO} | Fault Output Supply Voltage | Applied Between FO and COM | -0.3 ~ V _{DD} + 0.3 | V | | I _{FO} | Fault Output Current | Sink Current FO Pin | 5 | mA | | V _{CSC} | Current Sensing Input Voltage | Applied Between Csc and COM | -0.3 ~ V _{DD} + 0.3 | V | ## **Total System** | Symbol | Parameter | Conditions | Rating | Unit | |------------------|--------------------------------|---|-----------|-----------| | T _J | Operating Junction Temperature | | -40 ~ 150 | °C | | T _{STG} | Storage Temperature | | -40 ~ 125 | °C | | V _{ISO} | Isolation Voltage | 60 Hz, Sinusoidal, 1 Minute, Connection Pins to Heat Sink Plate | 1500 | V_{rms} | ### 1st Notes: - 1. $T_{\mbox{\footnotesize{CB}}}$ is pad temperature of case bottom. - 2. Marking " * " is calculation value or design factor. # Pin descriptions | Pin Number | Pin Name | Pin Description | | |------------|-------------------|---|--| | 1 | /FO | Fault Output | | | 2 | V _{TS} | Voltage Output of HVIC Temperature | | | 3 | Cfod | Capacitor for Duration of Fault Output | | | 4 | Csc | Capacitor (Low-pass Filter) for Short-circuit Current Detection Input | | | 5 | V _{DD} | Supply Bias Voltage for IC and MOSFETs Driving | | | 6 | IN_UH | Signal Input for High-side U Phase | | | 7 | IN_VH | Signal Input for High-side V Phase | | | 8 (8a) | COM | Common Supply Ground | | | 9 | IN_WH | Signal Input for High-side W Phase | | | 10 | IN_UL | Signal Input for Low-side U Phase | | | 11 | IN_VL | Signal Input for Low-side V Phase | | | 12 | IN_WL | Signal Input for Low-side W Phase | | | 13 | Nu | Negative DC-Link Input for U Phase | | | 14 | U | Output for U Phase | | | 15 | Nv | Negative DC-Link Input for V Phase | | | 16 | V | Dutput for V Phase | | | 17 | W | Output for W Phase | | | 18 | Nw | legative DC-Link Input for W Phase | | | 19 | V _{S(W)} | High-side Bias Voltage Ground for W phase Mosfet driving | | | 20 | P _W | Positive DC-Link Input for W Phase | | | 21 | P _V | Positive DC-Link Input for V Phase | | | 22 | P _U | Positive DC-Link Input for U Phase | | | 23 (23a) | V _{S(V)} | High-side Bias Voltage Ground for V phase Mosfet driving | | | 24 (24a) | V _{S(U)} | High-side Bias Voltage Ground for U phase Mosfet driving | | | 25 | V _{B(U)} | High-side Bias Voltage for U phase Mosfet driving | | | 26 | V _{B(V)} | High-side Bias Voltage for V phase Mosfet driving | | | 27 | V _{B(W)} | High-side Bias Voltage for W phase Mosfet driving | | Figure 1. Pin Configuration and Internal Block Diagram #### 1st Notes - 4. Source terminal of each low-side MOSFET is not connected to supply ground or bias voltage ground inside Motion SPM® 7 product. External connections should be made as indicated in Figure 2. - 5. The suffix -a pad is connected with same number pin. ex) 8 and 8a is connected inside. # **Electrical Characteristics** ($T_J = 25$ °C, $V_{DD} = V_{BS} = 15$ V unless otherwise specified.) Inverter Part (each MOSFET unless otherwise specified.) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------|---|---|-----|-----|-----|------| | BV _{DSS} | Drain - Source
Breakdown Voltage | V _{IN} = 0 V, I _D = 1 mA (2nd Notes 1) | 250 | - | - | V | | I _{DSS} | Zero Gate Voltage
Drain Current | V _{IN} = 0 V, V _{DS} = 250 V | - | - | 1 | mA | | R _{DS(on)} | Static Drain - Source
Turn-On Resistance | V _{DD} = V _{BS} = 15 V, V _{IN} = 5 V, I _D = 1.0 A | - | 1.1 | 1.4 | Ω | | V_{SD} | Drain - Source Diode
Forward Voltage | $V_{DD} = V_{BS} = 15V, V_{IN} = 0 V, I_{D} = -1.0 A$ | - | 0.9 | 1.2 | V | | t _{ON} | | | - | 460 | - | ns | | t _{D(ON)} | | | - | 405 | - | ns | | t_{OFF} | |
 V _{PN} = 150 V, V _{DD} = V _{BS} = 15 V, I _D = 1.0 A | - | 340 | - | ns | | t _{D(OFF)} | Switching Times | $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Inductive Load L = 3 mH | - | 280 | - | ns | | I _{rr} | Switching filles | Low-Side MOSFET Switching | - | 1.3 | - | Α | | t _{rr} | | (2nd Notes 2) | - | 72 | - | ns | | E _{ON} | | | - | 25 | - | μЈ | | E _{OFF} | | | - | 22 | - | μЈ | ### Control Part (each HVIC unless otherwise specified.) | Symbol | Parameter | Conditi | ions | Min | Тур | Max | Units | |----------------------|---|--|---|------|-----|------|-------| | I _{QDD} | Quiescent V _{DD} Current | V _{DD} =15V, V _{IN} =0V | V _{DD} - COM | - | 1.7 | 3.0 | mA | | I _{QBS} | Quiescent V _{BS} Current | V _{BS} =15V, V _{IN} =0V | $\begin{vmatrix} V_{B(X)} \text{-} V_{S(X)}, V_{B(V)} \text{-} V_{S(V)}, \\ V_{B(W)} \text{-} V_{S(W)} \end{vmatrix}$ | ı | 45 | 70 | μΑ | | I _{PDD} | Operating V _{DD} Current | V _{DD} =15V,F _{PWM} =20kHz,
duty=50%, PWM signal
input for Low side | V _{DD} - COM | - | 1.9 | 3.2 | mA | | I _{PBS} | Operating V _{BS} Current | V _{BS} =15V,F _{PWM} =20kHz,
duty=50%, PWM signal
input for High side | $\begin{matrix} V_{B(U)}\text{-}V_{S(U)}, V_{B(V)}\text{-}V_{S(V)}, \\ V_{B(W)}\text{-}V_{S(W)} \end{matrix}$ | - | 300 | 400 | μА | | UV _{DDD} | Low-side Undervoltage | V _{DD} Undervoltage Protection Detection Level | | 7.4 | 8.0 | 9.4 | V | | UV _{DDR} | Protection (Figure 6) | V _{DD} Undervoltage Protection | Reset Level | 8.0 | 8.9 | 9.8 | V | | UV _{BSD} | High-side Undervoltage | V _{BS} Undervoltage Protection Detection Level | | 7.4 | 8.0 | 9.4 | V | | UV _{BSR} | Protection (Figure 7) | V _{BS} Undervoltage Protection Reset Level | | 8.0 | 8.9 | 9.8 | V | | V _{TS} | HVIC Temperature sensing voltage output | V _{DD} =15V, T _{HVIC} =25°C (2nd Notes 3) | | 580 | 675 | 770 | mV | | V _{IH} | ON Threshold Voltage | Logic High Level | INL COM | - | - | 2.4 | V | | V _{IL} | OFF Threshold Voltage | Logic Low Level | IN - COM | 8.0 | - | - | V | | V _{SC(ref)} | SC Current Trip Level | V _{DD} =15V C _{SC} - COM | | 0.45 | 0.5 | 0.55 | ٧ | | t _{FOD} | Fault-out Pulse Width | C _{FOD} =33nF (2nd Notes 4) | | 1.0 | 1.4 | 1.8 | ms | #### 2nd Notes: ^{1.} BV_{DSS} is the absolute maximum voltage rating between drain and source terminal of each MOSFET inside Motion SPM® 7 product. V_{PN} should be sufficiently less than this value considering the effect of the stray inductance so that V_{PN} should not exceed BV_{DSS} in any case. ^{2.} toN and toFF include the propagation delay of the internal drive IC. Listed values are measured at the laboratory test condition, and they can be different according to the field applications due to the effect of different printed circuit boards and wirings. Please see Figure 3 for the switching time definition with the switching test circuit of Figure 4. ^{3.} V_{TS} is only for sensing-temperature of module and cannot shutdown MOSFETs automatically. ^{4.} The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation: $C_{FOD} = 24 \times 10^{-6} \times t_{FOD} [F]$ # **Recommended Operating Condition** | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |---|--|--|------|------|------|------| | V _{PN} | Supply Voltage Applied Between P and N | | - | 150 | 200 | V | | V_{DD} | Control Supply Voltage Applied Between V _{DD} and COM | | 13.5 | 15.0 | 16.5 | V | | V_{BS} | High-Side Bias Voltage | Applied Between V _B and V _S | 13.5 | 15.0 | 16.5 | V | | dV _{DD} /dt,
dV _{BS} /dt | Control Supply Variation | | -1.0 | - | 1.0 | V/μs | | t _{dead} | Blanking Time for Preventing
Arm-Short | $V_{DD} = V_{BS} = 13.5 \sim 16.5 \text{ V}, T_{J} \le 150 ^{\circ}\text{C}$ | 500 | - | - | ns | | f _{PWM} | PWM Switching Frequency | $T_{J} \leq 150^{\circ}C$ | - | 15 | - | kHz | #### **Thermal Resistance** | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |------------------|---|---|------|------|------|------| | $R_{\theta JCB}$ | Junction to Case Bottom
Thermal Resistance | Single MOSFET Operating Condition (3rd Notes 3) | - | 2.0 | - | °C/W | Figure 2. Recommended MCU Interface and Bootstrap Circuit with Parameters #### 3rd Notes - 1. $R_{\theta JCB}$ is simulation value with application board layout. (Please refer user's guide SPM7 series) - 2. Parameters for bootsrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching frequency, typical example of parameters is shown above. - 3. RC coupling(R₅ and C₅) at each input (indicated as dotted lines) may be used to prevent improper input signal due to surge noise. Signal input of SPM[®] is compatible with standard CMOS or LSTTL outptus. - 4. Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge voltage. Figure 3. Switching Time Definition Figure 4. Switching Test Circuit (Low-side) Figure 5. Under Voltage Protection **Figure 6. Short-Circuit Current Protection** (with the external shunt resistance and CR connection) c1: Normal operation: MOSFET ON and carrying current. c2 : Short circuit current detection (SC trigger). c3: Hard MOSFET gate interrupt. c4: MOSFET turns OFF. ${\tt c5}$: Fault output timer operation start : Fault-out width $({\tt t_{FOD}})$ c6: Input "L": MOSFET OFF state. c7: Input "H": MOSFET ON state, but during the active period of fault output the MOSFET doesn't turn ON. c8: MOSFET OFF state Figure 7. Timing Chart of Interlock Function Figure 8. Temperature profile V_{TS} vs. T_{HVIC} Figure 9. Example of Application Circuit #### 4th Notes: - 1. RC-coupling (R₅ and C₅, R₂ and C₆) and C₁, C₅, C₇, C₈ at each input of Motion SPM[®] 7 product and MCU are useful to prevent improper input signal caused by surge-noise. - 2. Ground-wires and output terminals, should be thick and short in order to avoid surge-voltage and malfunction of HVIC. - 3. All the filter capacitors should be connected close to Motion SPM 7 product, and they should have good characteristics for rejecting high-frequency ripple current. Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or data on the drawing and contact a FairchildSemiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide therm and conditions, specifically the the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/dwg//PQ/PQFN27A.pdf #### LAND PATTERN RECOMMENDATION SCALE: 2:1 NOTES: UNLESS OTHERWISE SPECIFIED - A) THIS PACKAGE IS NOT PRESENTLY REGISTERED TO ANY STANDARD COMMITTEE. - B) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM. - C) ALL DIMENSIONS ARE IN MILLIMETERS. - D) DRAWING CONFORMS TO ASME Y14.5M-1994. - E) LAND PATTERN REFERENCE: QFN65P1290X1290X140-40N-40N - F) DRAWING FILE NAME: MKT-PQFN27AREV3. - G) IT IS NOT NECESSARY TO SOLDER 23a AND 24a, AND CAN BE OMITTED FROM THE FOOTPRINT - H) FAIRCHILD SEMICONDUCTOR #### **TRADEMARKS** The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS" AX-CAP FRFET® Global Power Resource SM BitSiC™ Build it Now™ GreenBridge^{TI} CorePLUS™ Green FPS™ Green FPS™ e-Series™ CorePOWER™ CROSSVOLT™ Gmax™ CTLTM **GTO™** IntelliMAXTM Current Transfer Logic™ DEUXPEED[®] ISOPLANAR™ Dual Cool™ Making Small Speakers Sound Louder EcoSPARK® and Better™ EfficientMax™ MegaBuck^{TI} MICROCOUPLER™ ESBCTh MicroFET MicroPak™ Fairchild® MicroPak2™ Fairchild Semiconductor® MillerDrive™ FACT Quiet Series™ MotionMax™ mWSaver FAST® OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ **OPTOPLANAR®** PowerTrench® PowerXS™ Programmable Active Droop™ OFFT OSTM Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise¹¹ SmartMax™ SMART START Solutions for Your Success™ SPM® STEALTH* TRUECURRENT®* uSerDes™ UHC Ultra FRFET™ UniFET* VCX** VisualMax™ VoltagePlus™ XS™ Sync-Lock™ TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ SYSTEM SERVERAL #### DISCLAIMER **FPS™** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. #### As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full fraceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. ### PRODUCT STATUS DEFINITIONS | Datasheet Identification Product Status | | Definition | | | |---|-----------------------|---|--|--| | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | Rev. 166 ^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.