

HEXFET[®] Power MOSFET

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

V _{DSS}	24V
R _{DS(on)} typ.	0.8mΩ
max.	1.0mΩ
ID (Silicon Limited)	429A ①
ID (Package Limited)	240A

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free

G	D	S
Gate	Drain	Source

Bees Dout Number	Deekees Turee	Standar	d Pack	Ordershie Dert Number
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IRF1324S-7PPbF	IRF1324S-7PPbF D ² Pak 7 Pin -		50	IRF1324S-7PPbF
IKF 13243-7PP0F	D Fak / PIII	Tape and Reel Left	800	IRF1324STRL-7PP

Absolute Maximu	m Ratings		
Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	429①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	303 ①	_
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	240	— A
I _{DM}	Pulsed Drain Current ②	1640	
P _D @T _C = 25°C	Maximum Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery ④	1.6	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Avalanche Characteristics

E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ③	230	mJ
I _{AR}	Avalanche Current ②	See Fig.14,15, 18a, 18b	А
E _{AR}	Repetitive Avalanche Energy		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case		0.50	°C/W
$R_{ heta JA}$	Junction-to-Ambient ®		40	C/W

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at <u>www.infineon.com</u>

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	24			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.023		V/°C	Reference to 25°C, I_D = 5mA \odot
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.80	1.0	mΩ	V _{GS} = 10V, I _D = 160A
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} = V _{GS} , I _D = 250μA
	Drain to Source Lookage Current			20		V _{DS} =24V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} =19V,V _{GS} = 0V,T _J =125°C
	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	ПА	V _{GS} = -20V
R _G	Gate Resistance		3.0		Ω	

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

gfs	Forward Trans conductance	190			S	V _{DS} = 15V, I _D = 160A
Qg	Total Gate Charge		180	252		I _D = 75A
Q_{gs}	Gate-to-Source Charge		47			V _{DS} = 12V
Q_{gd}	Gate-to-Drain Charge		58		nC	V _{GS} = 10V⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		122			
t _{d(on)}	Turn-On Delay Time		19			V _{DD} = 16V
t _r	Rise Time		240			I _D = 160A
t _{d(off)}	Turn-Off Delay Time		86		ns	R _G = 2.7Ω
t _f	Fall Time		93			V _{GS} = 10V⑤
C _{iss}	Input Capacitance		7700			$V_{GS} = 0V$
C _{oss}	Output Capacitance		3380			V _{DS} = 19V
C _{rss}	Reverse Transfer Capacitance		1930		pF	f = 1.0MHz, See Fig. 5
Coss eff.(ER)	Effective Output Capacitance (Energy Related)		4780		•	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 19V $
Coss eff.(TR)	Effective Output Capacitance (Time Related)		4970			V _{GS} = 0V, V _{DS} = 0V to 19V6

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	C	onditions
ls	Continuous Source Current			429①		MOSFET sy	
-3	(Body Diode)				Α	showing the	;
	Pulsed Source Current			1640	~	integral reve	erse
I _{SM}	(Body Diode) ②			1040		p-n junction	diode.
V_{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C,I _S	= 160A,V _{GS} = 0V (5)
+	Reverse Recovery Time		71	107	nc	<u>T_ = 25°C</u>	$V_{DD} = 20V$
t _{rr}	Reverse Recovery Time		74	110	ns	<u>T_ = 125°C</u>	I _F = 160A,
0	Reverse Recovery Charge		83	120	nC	<u>T_J = 25°C</u>	di/dt = 100A/µs ⑤
Q _{rr}	Reverse Recovery Charge		92	140		<u>T_ = 125°C</u>	
I _{RRM}	Reverse Recovery Current		2.0		Α	T _J = 25°C	
t _{on}	Forward Turn-On Time	Intrinsic	turn-or	n time is	negligil	ble (turn-on is	dominated by L _S +L _D)

Notes:

- Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
 Repetitive rating; pulse width limited by max. junction temperature.
- With the second second
- $\label{eq:ISD} \textcircled{\begin{subarray}{c} \label{eq:ISD} \end{subarray}} \\ \textcircled{\begin{subarray}{c} \end{subarray}} & I_{SD} \leq 160A, \end{subarray} \end{subarray}, \end{subarray} V_{DD} \leq V_{(BR)DSS}, \end{subarray} \end{subarray} I_J \leq 175^\circ C.$
- (5) Pulse width \leq 400µs; duty cycle \leq 2%.
- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

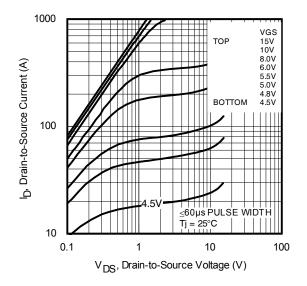


Fig. 1 Typical Output Characteristics

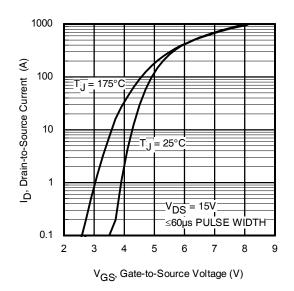


Fig. 3 Typical Transfer Characteristics

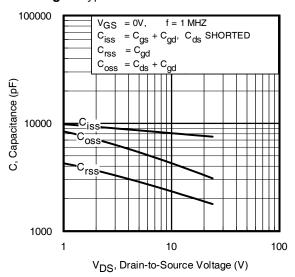


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

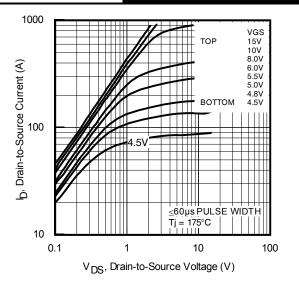
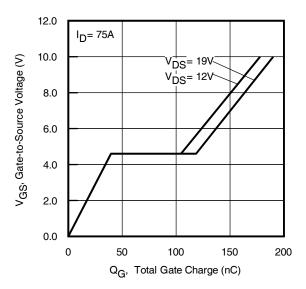
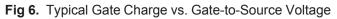
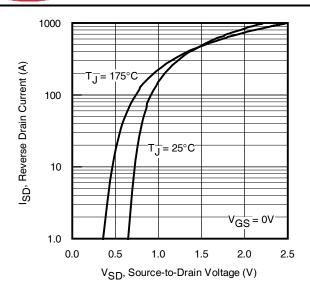
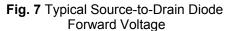




Fig. 2 Typical Output Characteristics




Fig. 4 Normalized On-Resistance vs. Temperature

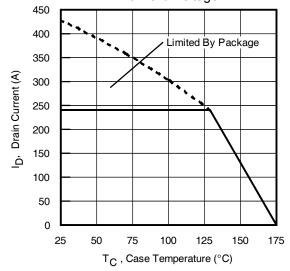


Fig 9. Maximum Drain Current vs. Case Temperature

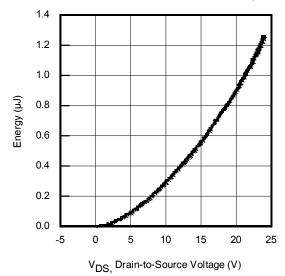


Fig 11. Typical Coss Stored Energy

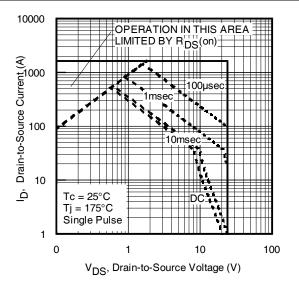


Fig 8. Maximum Safe Operating Area

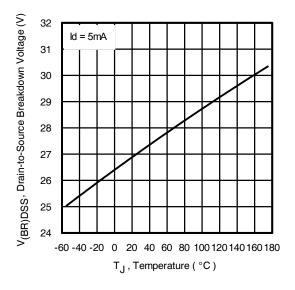


Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Maximum Avalanche Energy vs. Drain Current

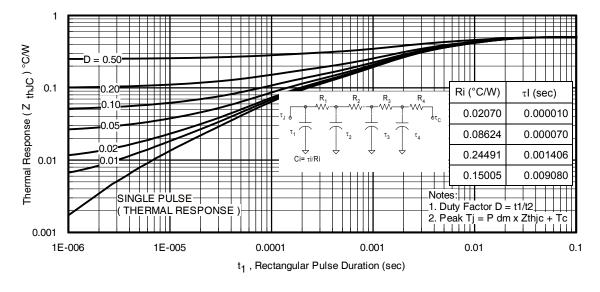


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

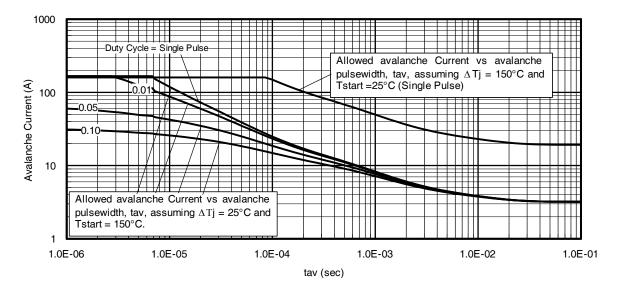
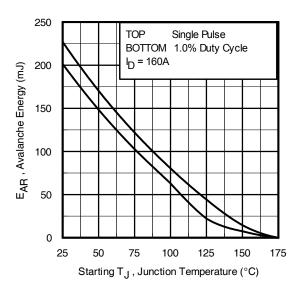
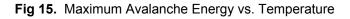



Fig 14. Avalanche Current vs. Pulse width



Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Timax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).
 - tav = Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} \textbf{P}_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \textbf{BV} \cdot \textbf{I}_{av} \text{)} = \Delta T \text{/ } \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2\Delta T \text{/ } [1.3 \cdot \textbf{BV} \cdot \textbf{Z}_{th}] \\ \textbf{E}_{AS \text{ (AR)}} &= \textbf{P}_{D \text{ (ave)}} \cdot \textbf{t}_{av} \end{split}$$

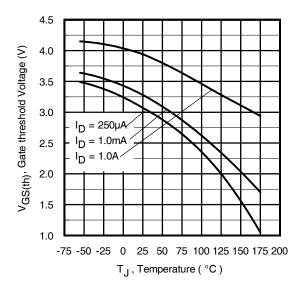
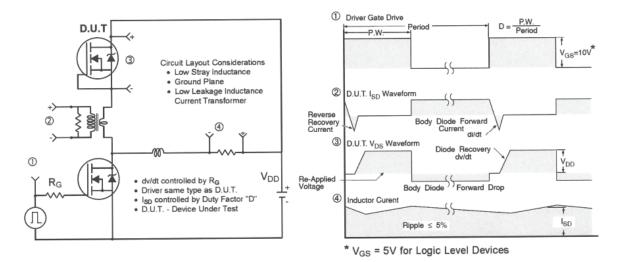
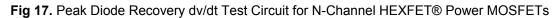




Fig 16. Threshold Voltage vs. Temperature

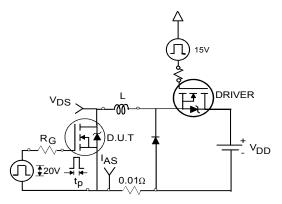


Fig 18a. Unclamped Inductive Test Circuit

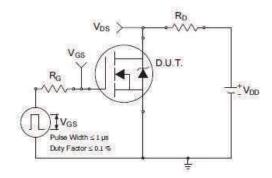


Fig 19a. Switching Time Test Circuit

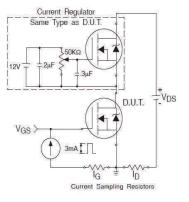


Fig 20a. Gate Charge Test Circuit

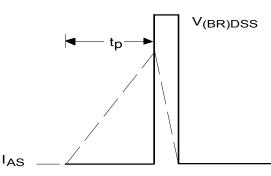
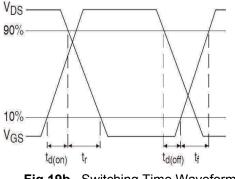
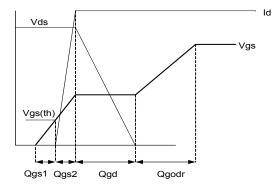
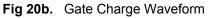
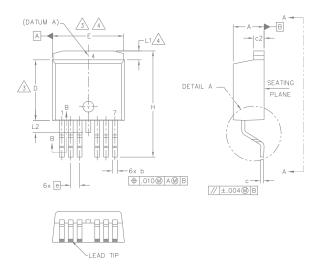
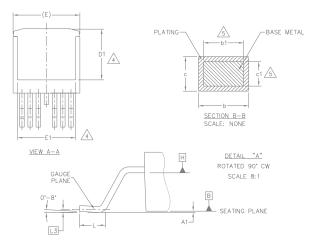


Fig 18b. Unclamped Inductive Waveforms


Fig 19b. Switching Time Waveforms

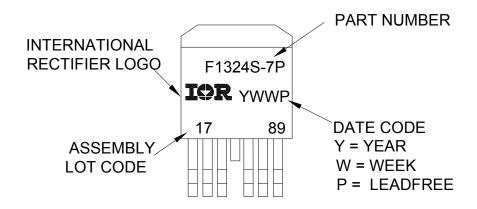


D²Pak - 7 Pin Package Outline (Dimensions are shown in millimeters (inches))

S Y M		N			
B	MILLIMETERS INCH			HES	O T E S
L	MIN.	MAX.	MIN.	MAX.	E S
А	4.06	4.83	.160	.190	
A1	_	0.254	_	.010	
b	0.51	0.99	.020	.036	
b1	0.51	0.89	.020	.032	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	7.42	.270	.292	4
E	9.65	10.54	.380	.415	3,4
E1	6.22	8.48	.245	.334	4
е	1.27	BSC	.050	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	—	1.68	-	.066	4
L2	_	1.78	-	.070	
L3	0.25	BSC	.010	BSC	

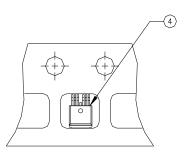
NOTES:

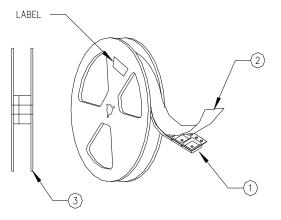
- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- J. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED


 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST

 EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB. EXCEPT FOR DIMS. E, E1 & D1.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


D²Pak - 7 Pin Part Marking Information


D²Pak - 7 Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1. TAPE AND REEL.
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. $71\!-\!9667.$
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS. REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS. HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER: IRFXXXXSTRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE: IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

Qualification Level	Industrial ^{††} (per JEDEC JESD47F ^{††} guidelines)					
Moisture Sensitivity Level	D ² -Pak 7 Pin MSL1 (per JEDEC J-STD-020D ^{††})					
RoHS Compliant	Yes					

† Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/</u>

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments				
4/8/2014	 Added Ordering information table on page 1 Updated package outline on page 8 Updated part marking on page 9 Added Qualification table on page 10. Updated data sheet with new IR corporate template. 				
10/15/2015	 Updated datasheet with corporate template Updated typo on GFS from "V_{DD}=50V, I_D=160A, Min= 270S to "V_{DD}= 15V,I_D=160A Min=190S on page 2. Corrected typo on Fig9 package limited from "160A" to "240A" on page 4. 				

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.