

Energy Storage Capacitors

Technical Note

Embedded Charger for 196 HVC ENYCAP™ Capacitor Constant Voltage Charger With Intermittent Charging Technique

By Gerald Tatschl

MAL219699002E3 196 HVC ENYCAP™ - EMBEDDED CHARGER

This version is optimized for a 196 HVC in a 90 F, 8.4 V configuration. Basically, it is a voltage converter and switch logic in one, which adjusts to a wide input voltage range. It provides the correct charging voltage and protects against deep discharge.

INTRODUCTION

The 196 HVC 90 F series is a real hybrid system combining electrostatic and faradaic energy storage. It has more power density than a battery and more energy density than an ultra capacitor. Therefore, it is possible to charge HVCs faster than a battery.

For applications that require a constantly high charge state of the energy storage device, e.g. backup systems, an intermittent (pulsed) charging method is recommended. The idea behind intermittent charging is to compensate for self-discharge, while avoiding regular overcharge, in order to improve the service life of the hybrid system.

The recommended and simplest way to implement intermittent charging is a constant voltage source controlled by a timer.

An initial charge ensures enough energy for the next application, while maintenance charge pulses compensate for the self-discharge of the capacitor.

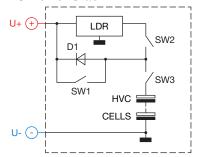
Typical steps:

- 1. Check for available energy via an open circuit voltage (OCV) measurement, and provide initial charging if necessary
- 2. After initiation, regular operation begins. Maintain the charge state and monitor the state of health (SOH)
- 3. Discharge scenario (backup) \rightarrow 1.

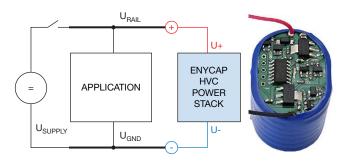
For detailed product information, please check the 196 HVC product specification (www.vishay.com/doc?28409). All relevant parameters concerning the 196 HVC are explained within this document.

For details on the recommended charging method, refer to the Vishay application note "Power Management Solution: Constant Voltage (CV) Pulse Charging of Hybrid Capacitors" (www.vishay.com/doc?28427).

ECHNICAL NOT


GENERAL INFORMATION

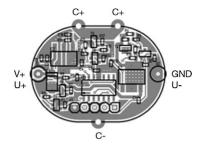
The embedded 196 HVC charger is a product for demonstrating the recommended charging technique (intermittent charging = pulsed charging). This version is designed for an HVC in the 90 F, 8.4 V configuration.


Basically, it is a voltage converter (LDR) that adjusts a wide input voltage range to the correct charging voltage. It can be powered directly, e.g. by the 12 V power of a PCI slot.

SCHEMATIC

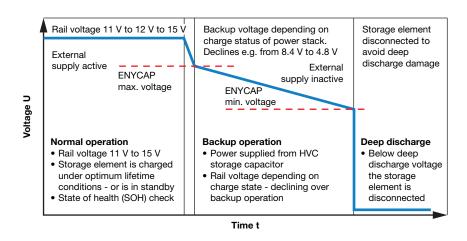
ENYCAP HVC Power Stack

APPLICATION


LAYOUT AND CONNECTION

The embedded charger is designed to be connected directly with the pins of a 196 HVC 90 F stack.

L: 33 mm


W: 25 mm

H: 3 mm

The arrangement of the cells is flexible. Usually, the firmware of the board is programmed specifically for a 196 HVC in the standard 90 F, 8.4 V configuration. Reprogram the controller for other voltages.

FUNCTIONS

Document Number: 28444 III

Ш

I

Z ()

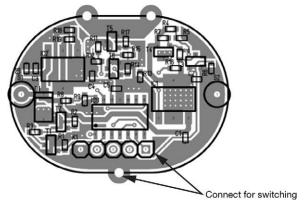
A

Z

0

It is a constant voltage charger. As soon as it is powered, it will charge the HVC power caps pack for five minutes (CCCV - 8.7 V). After that, for regular stand-by operation in a backup application, it will apply a charge pulse of one minute (CCCV 8.7 V) every 12 hours. This is sufficient to compensate for self-discharge, which occurs over long periods of time. These parameters are not adjustable for the customer.

CHARGING PARAMETERS			
PARAMETER	MIN.	UNITS	
Input voltage	10 to 13	V	
Charging voltage	8.7	V	
Timer initial charge	300	S	
Timer pulse charge	60	s	
Timer pause (OCV)	12	h	


The power supply voltage for the embedded charger can be between 10 V and 13 V.

If the power supply fails, the charger switches to a discharge circuit and enables the power caps to become a power supply, e.g. for data backup.

The 196 HVC pack is separated from the electronic circuit by a high resistivity MOSFET. This allows a so-called sleep mode. As soon as a power supply is detected, the MOSFET is switched off and the charger leaves the sleep mode.

There are three options for reactivating from sleep mode:

- 1. Discharge below 4.8 V → the MOSFET will switch in order to protect the HVC power caps from deep discharge
- 2. 30 minutes after the power supply is disconnected, the MOSFET will switch in order to protect the HVC power caps from deep discharge
- 3. Connect the following pins to manually switch the MOSFET

As soon as a power supply is detected, the sleep mode is terminated.

CONNECTOR

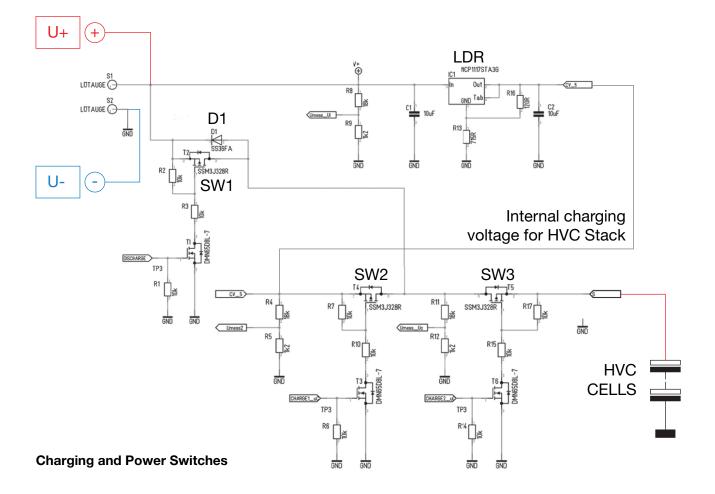
Molex 87439-0400 connector

- 1. + (Red) Positive rail
- 2. (Black) Negative rail
- 3. (White) Temperature
- 4. (Blue) Temperature

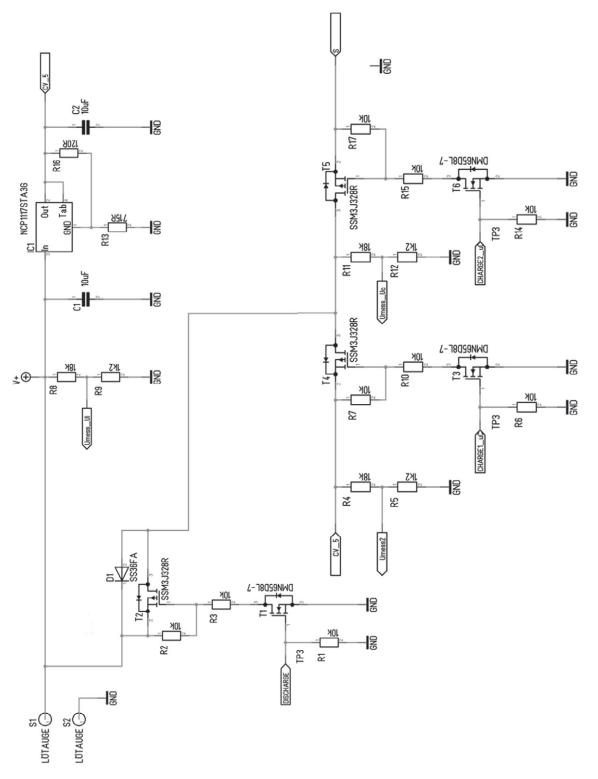
REMARKS

There are some features for backup operations that should be controlled by an external logic:

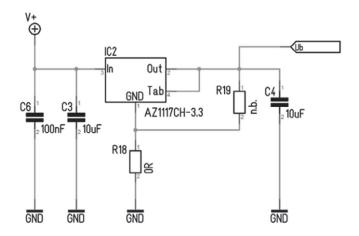
- 1. If the voltage drops below < 1.29 V per cell (< 7.74 V for a HVC 90 F, 8.4 V), an initial charge pulse should be applied
- 2. Backup operation is finished, but the power supply is still off \rightarrow an external signal should activate sleep mode
- 3. SOH tracking (= ESR(DC) determination)

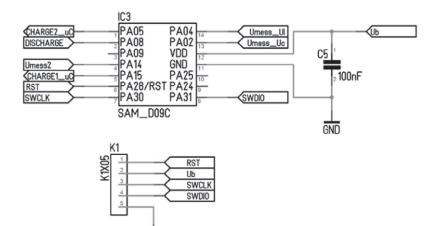

HNIC A Z 0

Ш 0



CIRCUIT


Overview



DETAIL

GND

NAME	VALUE	SPECIFICATION	CHASSIS
C1	10 μF	≥ 5 V 10 % X7R ceramic capacitor	603
C2	10 μF	≥ 5 V 10 % X7R ceramic capacitor	603
C3	10 μF	≥ 16 V	603
C4	10 μF	≥ 5 V	603
C5	100 nF	≥ 5 V	603
C6	100 nF	≥ 16 V	603
D1	SS36FA		SMA
IC1	NCP1117STA3G		SOT-223/1
IC2	AZ1117CH-3.3		SOT-223/1
IC3	ATSAMD09C		SOIC14_WB3.9_P1.2
R1	10 000	1 %	603
R2	10 000	1 %	603
R3	10 000	1 %	603
R4	18 000	1 %	603
R5	1200	1 %	603
R6	10 000	1 %	603
R7	10 000	1 %	603
R8	18 000	1 %	603
R9	1200	1 %	603
R10	10 000	1 %	603
R11	18 000	1 %	603
R12	1200	1 %	603
R13	715	1 %	603
R14	10 000	1 %	603
R15	10 000	1 %	603
R16	120	1 %	603
R17	10 000	1 %	603
R18	0	1 %	603
R19	n/a	1 %	603
T1	DMN65D8L-7		SOT-23/3
T2	SSM3J328R		SOT-23/3
T3	DMN65D8L-7		SOT-23/3
T4	SSM3J328R		SOT-23/3
T5	SSM3J328R		SOT-23/3
T6	DMN65D8L-7		SOT-23/3