

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

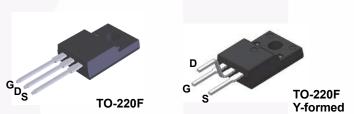
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

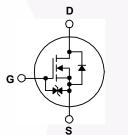
FCPF1300N80Z

N-Channel SuperFET[®] II MOSFET

800 V, 6 A, 1.3 Ω

Features


- R_{DS(on)} = 1.05 Ω (Typ.)
- Ultra Low Gate Charge (Typ. Q_g = 16.2 nC)
- Low E_{oss} (Typ. 1.57 uJ @ 400V)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 48.7 pF)
- 100% Avalanche Tested
- RoHS Compliant
- ESD Improved Capability


Applications

- AC DC Power Supply
- LED Lighting

Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. In addition, internal gate-source ESD diode allows to withstand over 2kV HBM surge stress. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as Audio, Laptop adapter, Lighting, ATX power and industrial power applications.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FCPF1300N80Z FCPF1300N80ZYD	Unit	
V _{DSS}	Drain to Source Voltage			800	V	
N/	Cata to Source Valtage	- DC		±20	V	
V _{GSS}	Gate to Source Voltage	- AC	(f > 1 Hz)	±30	v	
I _D	Drain Current	- Continuous (T _C = 25 ^o C)		6.0*	Α	
		- Continuous (T _C = 100 ^o C)		3.8*	~	
I _{DM}	Drain Current	- Pulsed	(Note 1)	12*	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			48	mJ	
I _{AR}	Avalanche Current (Note 1)		0.8	Α		
E _{AR}	Repetitive Avalanche Energy		(Note 1)	0.26	mJ	
dv/dt	MOSFET dv/dt			100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)			20		
P _D	Dawar Dissingtion	(T _C = 25 ^o C)		24	W	
	Power Dissipation	- Derate Above 25°C		0.19	W/ºC	
T _J , T _{STG}	Operating and Storage Tempe	rature Range		-55 to +150	°C	
T ₁	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C		

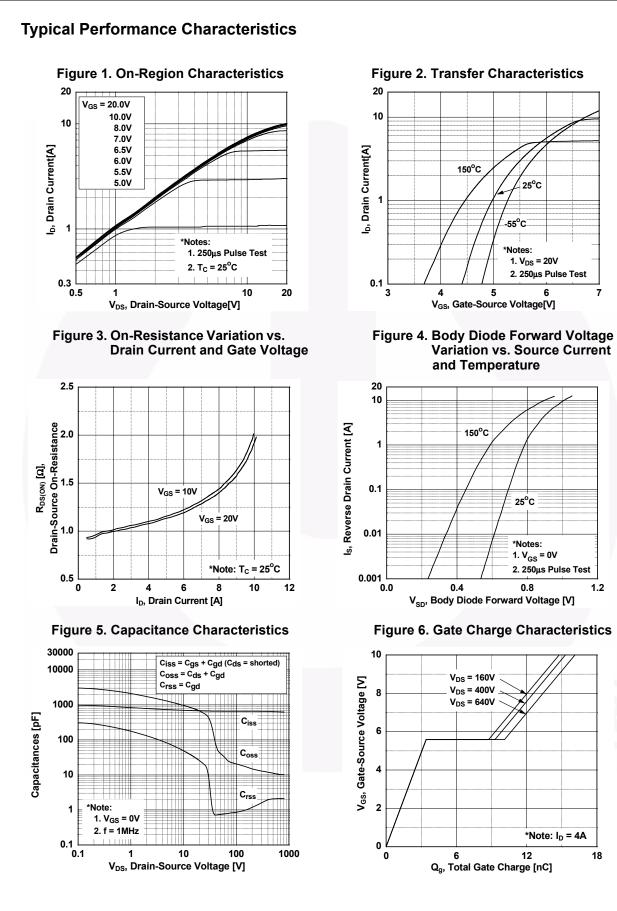
Thermal Characteristics

Symbol	Parameter	FCPF1300N80Z FCPF1300N80ZYD	Unit			
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	5.2	°C/W			
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	62.5				

FCPF130
1300N80Z — 1
N-Channel S
SuperFET®
[®] II MOSFET

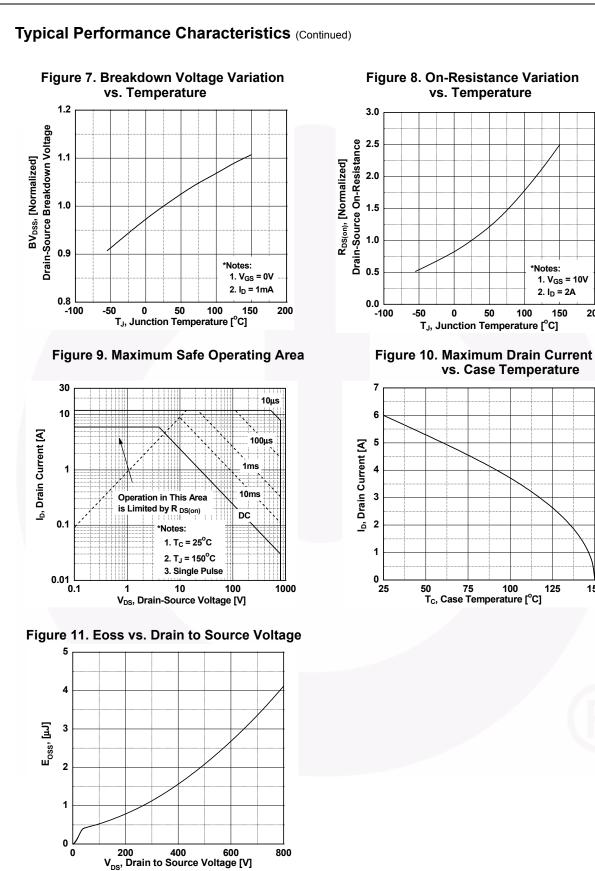
FCPF1300N80Z FCPF1300N80Z FCPF1300N80Z Iracteristics T _C = Parameter CS to Source Breakdown Vo down Voltage Temperatu cient Bate Voltage Drain Currer o Body Leakage Current CS Threshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance t Capacitance	25°C un 25°C un obltage ire t	$V_{GS} =$ $I_D = 1$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	TubeTubeTubeTubeTest Conditions0 V, $I_D = 1$ mA, $T_J =$ mA, Referenced to 2800 V, $V_{GS} = 0$ V640 V, $V_{GS} = 0$ V640 V, $V_{GS} = 0$ V20 V, $V_{DS} = 0$ VVDS, $I_D = 0.4$ mA10 V, $I_D = 2$ A20 V, $I_D = 2$ A	5°C		N/A N/A Typ. - 0.85 - - - - 1.05		50 units 50 units Unit V/°C - μΑ μΑ V V/°C
Parameter Parameter CS to Source Breakdown Vo down Voltage Temperatu- cient Sate Voltage Drain Currer o Body Leakage Current CS Threshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	25°C un 25°C un oltage ure t	$V_{GS} = I_D = 1$ $V_{GS} = V_{DS} = V_{GS} = $	rerwise noted. Test Conditions 0 V, I _D = 1 mA, T _J = mA, Referenced to 2 800 V, V _{GS} = 0 V 640 V, V _{GS} = 0 V,T _C ± 20 V, V _{DS} = 0 V V _{DS} , I _D = 0.4 mA 10 V, I _D = 2 A	25°C 5°C	Min. 800 - - - 2.5	Typ. - 0.85 - - - 1.05	Max. - - 25 250 ±10 4.5	Unit V V/°C μΑ μΑ V
Parameter CS to Source Breakdown Vo down Voltage Temperatu cient Gate Voltage Drain Currer o Body Leakage Curren CS Threshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	bltage ire ent	$V_{GS} =$ $I_D = 1$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	Test Conditions 0 V, $I_D = 1 \text{ mA}, T_J =$ mA, Referenced to 2 800 V, $V_{GS} = 0 \text{ V}$ 640 V, $V_{GS} = 0 \text{ V}, T_C$ ±20 V, $V_{DS} = 0 \text{ V}$ V _{DS} , $I_D = 0.4 \text{ mA}$ 10 V, $I_D = 2 \text{ A}$	5°C	800 - - - 2.5	- 0.85 - - - - 1.05	- - 25 250 ±10 4.5	V V/ ^o C μΑ μΑ V
cs to Source Breakdown Vo down Voltage Temperatu cient Bate Voltage Drain Curre o Body Leakage Current cs Threshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	ent	$I_{D} = 1$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	0 V, $I_D = 1$ mA, $T_J =$ mA, Referenced to 2 800 V, $V_{GS} = 0$ V 640 V, $V_{GS} = 0$ V, T_C ±20 V, $V_{DS} = 0$ V V _{DS} , $I_D = 0.4$ mA 10 V, $I_D = 2$ A	5°C	800 - - - 2.5	- 0.85 - - - - 1.05	- - 25 250 ±10 4.5	V V/ ^o C μΑ μΑ V
to Source Breakdown Vo down Voltage Temperatu cient Bate Voltage Drain Curre o Body Leakage Curren CS Threshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	ent	$I_{D} = 1$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	mA, Referenced to 2 800 V, $V_{GS} = 0 V$ 640 V, $V_{GS} = 0 V,T_C$ ±20 V, $V_{DS} = 0 V$ V_{DS} , $I_D = 0.4$ mA 10 V, $I_D = 2$ A	5°C	- - - 2.5	- - - 1.05	- 25 250 ±10 4.5	V/°C μΑ μΑ V
down Voltage Temperatu cient Gate Voltage Drain Curren o Body Leakage Curren CS Fhreshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	ent	$I_{D} = 1$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	mA, Referenced to 2 800 V, $V_{GS} = 0 V$ 640 V, $V_{GS} = 0 V,T_C$ ±20 V, $V_{DS} = 0 V$ V_{DS} , $I_D = 0.4$ mA 10 V, $I_D = 2$ A	5°C	- - - 2.5	- - - 1.05	- 25 250 ±10 4.5	V/°C μΑ μΑ V
down Voltage Temperatu cient Gate Voltage Drain Curren o Body Leakage Curren CS Fhreshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	ent	$I_{D} = 1$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	mA, Referenced to 2 800 V, $V_{GS} = 0 V$ 640 V, $V_{GS} = 0 V,T_C$ ±20 V, $V_{DS} = 0 V$ V_{DS} , $I_D = 0.4$ mA 10 V, $I_D = 2$ A	5°C	- - 2.5	- - - 1.05	25 250 ±10 4.5	μΑ μΑ V
Gate Voltage Drain Curren o Body Leakage Curren CS Fhreshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	t	V _{GS} = V _{GS} = V _{GS} =	640 V, $V_{GS} = 0 V, T_C$ ±20 V, $V_{DS} = 0 V$ V _{DS} , $I_D = 0.4 \text{ mA}$ 10 V, $I_D = 2 \text{ A}$	= 125°C	- - 2.5	- - 1.05	250 ±10 4.5	μA V
o Body Leakage Current cs Threshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	t	V _{GS} = V _{GS} = V _{GS} =	640 V, $V_{GS} = 0 V, T_C$ ±20 V, $V_{DS} = 0 V$ V _{DS} , $I_D = 0.4 \text{ mA}$ 10 V, $I_D = 2 \text{ A}$	= 125°C	- 2.5	- - 1.05	250 ±10 4.5	μA V
cs Threshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance		V _{GS} = V _{GS} = V _{GS} =	$\pm 20 \text{ V}, \text{ V}_{\text{DS}} = 0 \text{ V}$ V _{DS} . I _D = 0.4 mA 10 V, I _D = 2 A		- 2.5	- 1.05	±10 4.5	V
Threshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	istance	V _{GS} = V _{GS} =	V _{DS} , I _D = 0.4 mA 10 V, I _D = 2 A					
Threshold Voltage Drain to Source On Res rd Transconductance teristics Capacitance	istance	V _{GS} =	10 V, I _D = 2 A					
Drain to Source On Res rd Transconductance teristics Capacitance	istance	V _{GS} =	10 V, I _D = 2 A					
rd Transconductance teristics Capacitance		00	-		-			
Capacitance		00	, D			4.5	-	S
Capacitance				I		_		
	-				_	661	880	pF
Output Capacitance Reverse Transfer Capacitance			100 V, V _{GS} = 0 V,	-	-	22.3	30	pF
		f = 1 N	ЛНz	_	-	0.74	-	pF
t Capacitance	_	V _D e =	480 V, V _{GS} = 0 V, f =	: 1 MHz	-	11.4	-	pF
ve Output Capacitance	-				-	48.7	-	pF
Sate Charge at 10V	_				-	16.2	21	nC
o Source Gate Charge				-	-	3.5	-	nC
o Drain "Miller" Charge				(Note 4)	-	6.8	-	nC
alent Series Resistance		f = 1 N	ЛНz		-	4	-	Ω
cteristics								
					- /	14	38	ns
,		V _{DD} =	400 V, I _D = 4 A,	-		8.3	27	ns
				-	-	33	76	ns
				(Note 4)	-	6	22	ns
-0 -0 -0	Gate Charge at 10V to Source Gate Charge to Drain "Miller" Charge valent Series Resistance acteristics -On Delay Time -On Rise Time -Off Delay Time -Off Fall Time	Gate Charge at 10V to Source Gate Charge to Drain "Miller" Charge valent Series Resistance acteristics -On Delay Time -On Rise Time -Off Delay Time	Gate Charge at 10V V_{DS} =to Source Gate Charge V_{GS} =to Drain "Miller" Charge V_{GS} =valent Series Resistance $f = 1 \text{ M}$ acteristics-On Delay Time V_{DD} =-On Rise Time V_{GS} =-Off Delay Time V_{GS} =-Off Fall Time V_{GS} =	Gate Charge at 10V $V_{DS} = 640 \text{ V}, \text{ I}_D = 4 \text{ A},$ $V_{GS} = 10 \text{ V}$ a to Source Gate Charge $V_{GS} = 10 \text{ V}$ a to Drain "Miller" Charge $r = 1 \text{ MHz}$ valent Series Resistance $f = 1 \text{ MHz}$ acteristics $r = 1 \text{ MHz}$ -On Delay Time $V_{DD} = 400 \text{ V}, \text{ I}_D = 4 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_g = 4.7 \Omega$ -Off Delay Time $Off Fall Time$	Gate Charge at 10V $V_{DS} = 640 \text{ V}, \text{ I}_D = 4 \text{ A},$ $V_{GS} = 10 \text{ V}$ to Source Gate Charge $V_{GS} = 10 \text{ V}$ to Drain "Miller" Charge(Note 4)valent Series Resistance $f = 1 \text{ MHz}$ racteristicsOn Delay Time -On Rise Time-Off Delay Time $V_{DD} = 400 \text{ V}, \text{ I}_D = 4 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_g = 4.7 \Omega$ -Off Fall Time(Note 4)	Gate Charge at 10V $V_{DS} = 640 \text{ V}, I_D = 4 \text{ A},$ $V_{GS} = 10 \text{ V}$ -to Source Gate Charge $V_{GS} = 10 \text{ V}$ -to Drain "Miller" Charge(Note 4)-valent Series Resistance $f = 1 \text{ MHz}$ -acteristics-On Delay Time-On Rise Time $V_{DD} = 400 \text{ V}, I_D = 4 \text{ A},$ $V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ -Off Fall Time(Note 4)-	Gate Charge at 10V $V_{DS} = 640 \text{ V}, I_D = 4 \text{ A},$ $V_{GS} = 10 \text{ V}$ -16.2to Source Gate Charge $V_{GS} = 10 \text{ V}$ -3.5to Drain "Miller" Charge(Note 4)-6.8valent Series Resistancef = 1 MHz-4acteristics-On Delay Time-14-On Rise Time $V_{DD} = 400 \text{ V}, I_D = 4 \text{ A},$ $V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ -14-Off Delay Time-33Off Fall Time(Note 4)-6	Gate Charge at 10V $V_{DS} = 640 \text{ V}, I_D = 4 \text{ A}, V_{GS} = 10 \text{ V}$ - 16.2 21 to Source Gate Charge $V_{GS} = 10 \text{ V}$ - 3.5 - to Drain "Miller" Charge (Note 4) - 6.8 - valent Series Resistance f = 1 MHz - 4 - acteristics -On Delay Time - 14 38 -On Rise Time V_{DD} = 400 V, I_D = 4 A, V_{GS} = 10 V, R_g = 4.7 \Omega - 8.3 27 -Off Delay Time - 33 76 -Off Fall Time (Note 4) - 6 22

I _S	Maximum Continuous Drain to Source Diode	-	-	6	А	
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	12	Α
V _{SD}	Drain to Source Diode Forward Voltage V_{G}	_{GS} = 0 V, I _{SD} = 4 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time V _G	_{SS} = 0 V, I _{SD} = 4 A,	-	275	-	ns
Q _{rr}	Reverse Recovery Charge dl _F	₌/dt = 100 A/μs	-	2.9	-	μC

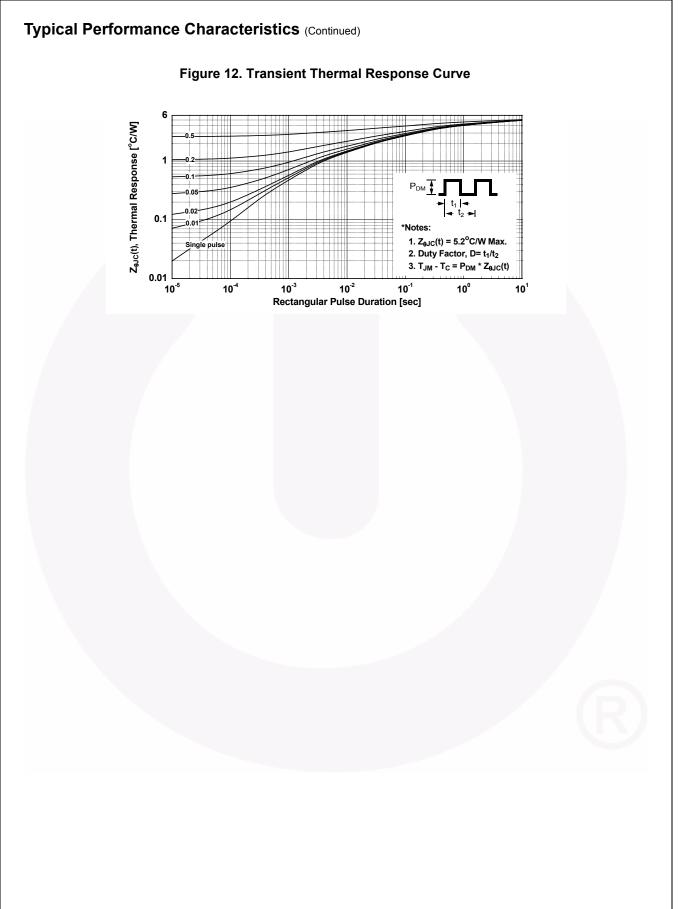

Notes:

1. Repetitive rating: pulse width limited by maximum junction temperature.

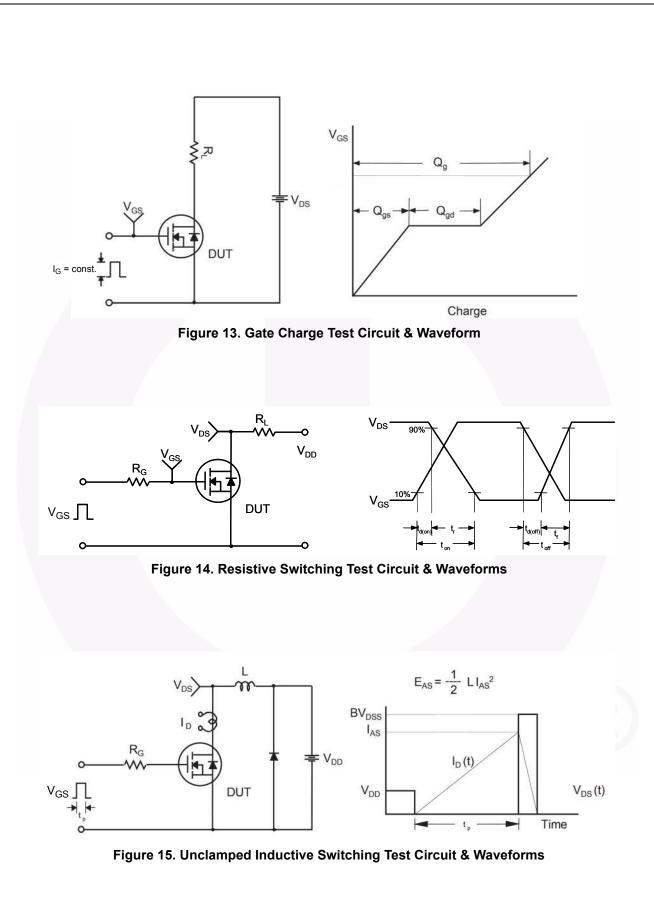
2. I_{AS} = 0.8 A, R_G = 25 $\Omega_{\!\!,}$ starting T_J = 25°C

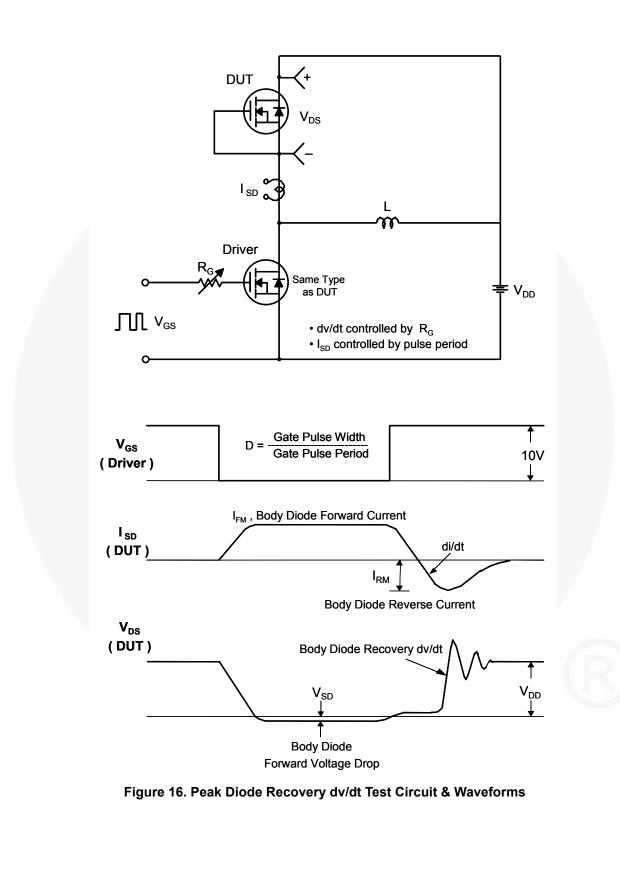

3. I_{SD} \leq 6 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS}, starting T_J = 25°C

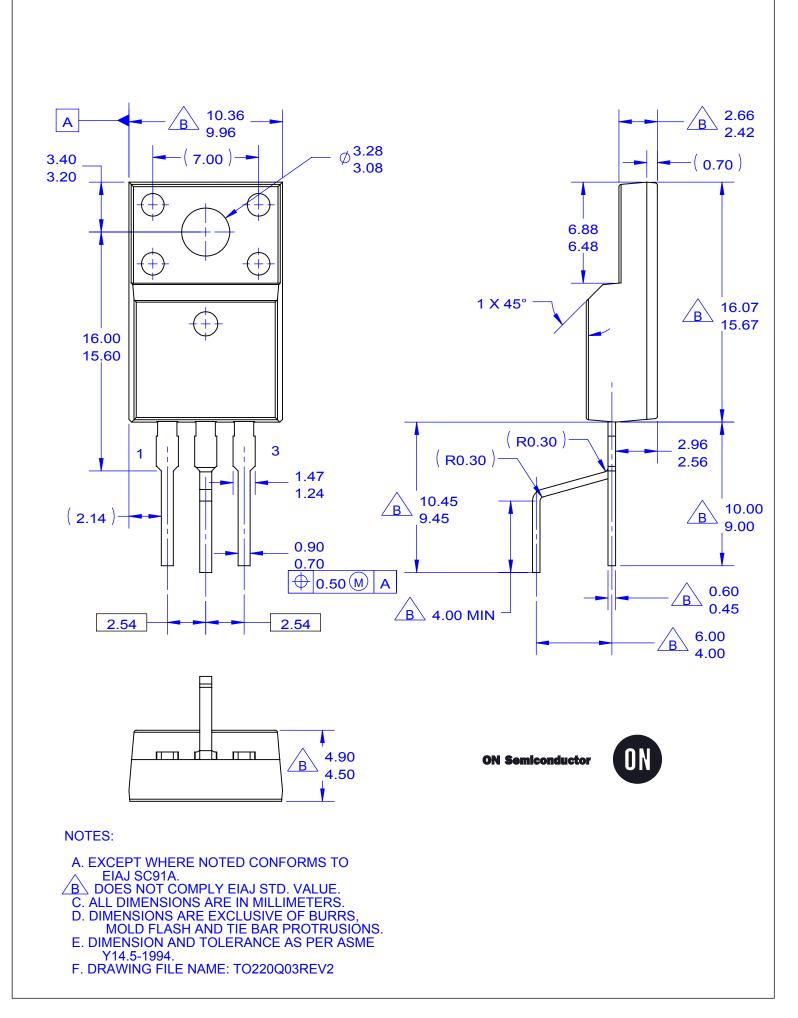
4. Essentially independent of operating temperature typical characteristic.

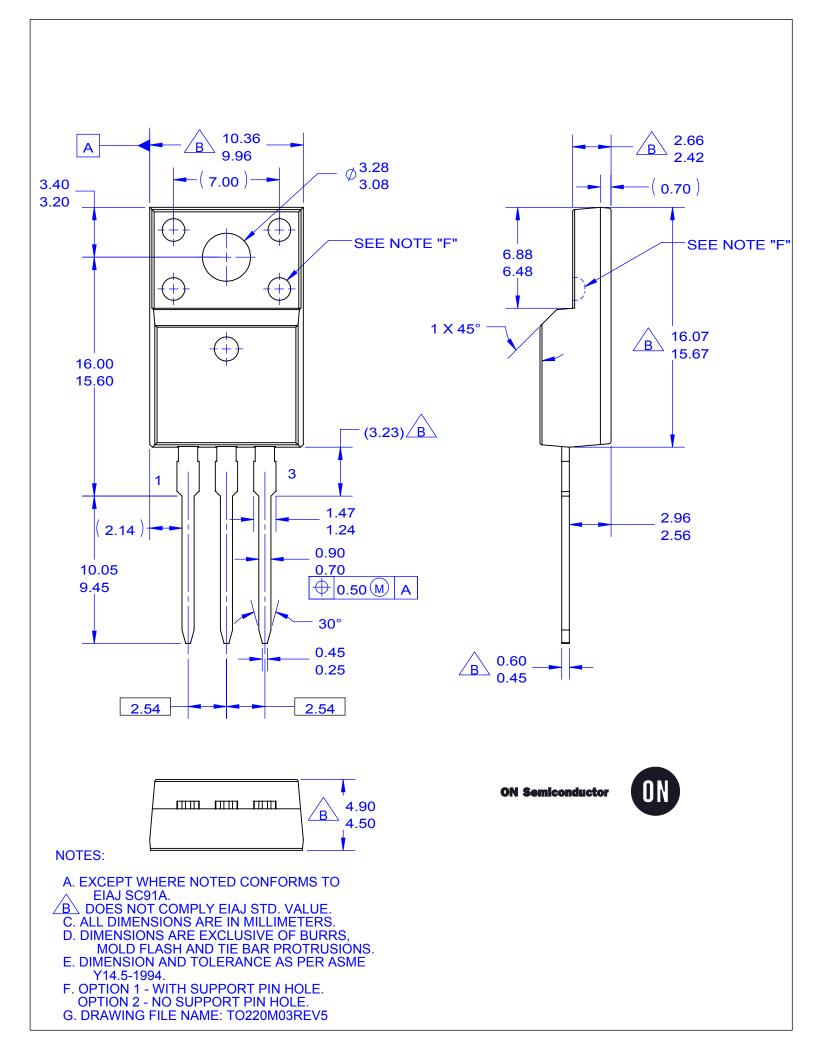


©2014 Fairchild Semiconductor Corporation FCPF1300N80Z Rev. 1.2




©2014 Fairchild Semiconductor Corporation FCPF1300N80Z Rev. 1.2




5

FCPF1300N80Z — N-Channel SuperFET[®] II MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC