

N-channel TrenchMOS logic level FET Rev. 03 — 2 June 2008

Product profile 1.

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using Nexperia High Performance Automotive (HPA) TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in automotive critical applications.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Suitable for logic level gate drive sources

1.3 Applications

- Air bag
- Automotive transmission control
- Fuel pump and injection

- Q101 compliant
- Suitable for thermally demanding environments due to 175 °C rating
- Automotive ABS systems
- Diesel injection systems
- Motors, lamps and solenoids

1.4 Quick reference data

Table 1. **Quick reference**

Parameter	Conditions	Min	Тур	Max	Unit
drain-source voltage	$T_j \geq 25 ~^\circ C; ~T_j \leq 175 ~^\circ C$	-	-	40	V
drain current	$V_{GS} = 5 \text{ V}; T_{mb} = 25 \text{ °C};$ see <u>Figure 4</u> and <u>1</u>	-	-	56	A
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	85	W
characteristics					
gate-drain charge	$V_{GS} = 5 \text{ V}; I_D = 10 \text{ A};$ $V_{DS} = 32 \text{ V}; \text{see } Figure 14$	-	9	-	nC
aracteristics					
drain-source on-state resistance	$V_{GS} = 5 \text{ V}; I_D = 20 \text{ A};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{13} \text{ and } \frac{13}{13}$	-	12	14	mΩ
ne ruggedness					
non-repetitive drain-source avalanche energy	$ \begin{split} I_D &= 56 \text{ A}; \text{V}_{sup} \leq 40 \text{V}; \\ R_{GS} &= 50 \Omega; \text{V}_{GS} = 5 \text{V}; \\ T_{j(\text{init})} &= 25 ^\circ\text{C}; \text{ unclamped} \end{split} $	-	-	89	mJ
	drain-source voltage drain current total power dissipation characteristics gate-drain charge aracteristics drain-source on-state resistance non-repetitive drain-source	$\begin{array}{ll} \mbox{drain-source voltage} & T_j \geq 25 \ {}^\circ\mbox{C}; \ T_j \leq 175 \ {}^\circ\mbox{C} \\ \mbox{drain current} & V_{GS} = 5 \ V; \ T_{mb} = 25 \ {}^\circ\mbox{C}; \\ \mbox{see Figure 4 and } \underline{1} \\ \mbox{total power dissipation} & T_{mb} = 25 \ {}^\circ\mbox{C}; \ \mbox{see Figure 2} \\ \mbox{characteristics} \\ \mbox{gate-drain charge} & V_{GS} = 5 \ V; \ I_D = 10 \ A; \\ V_{DS} = 32 \ V; \ \mbox{see Figure 14} \\ \mbox{aracteristics} \\ \mbox{drain-source on-state} & V_{GS} = 5 \ V; \ I_D = 20 \ A; \\ \ T_j = 25 \ {}^\circ\mbox{C}; \ \mbox{see Figure 12} \ \mbox{and} \\ \mbox{13} \\ \mbox{terms} \\ \mbox{non-repetitive} & I_D = 56 \ A; \ V_{sup} \leq 40 \ V; \\ \ R_{GS} = 50 \ \Omega; \ V_{GS} = 5 \ V; \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{ll} \mbox{drain-source voltage} & T_j \geq 25 \ {}^\circ\mbox{C}; \ T_j \leq 175 \ {}^\circ\mbox{C} & - \\ \mbox{drain current} & V_{GS} = 5 \ V; \ T_{mb} = 25 \ {}^\circ\mbox{C}; & - \\ \ see \ \hline \mbox{see Figure 4} \ and \ \underline{1} & \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{cccc} \text{drain-source voltage} & T_j \geq 25 \ ^{\circ}\text{C}; \ T_j \leq 175 \ ^{\circ}\text{C} & - & - \\ \text{drain current} & V_{GS} = 5 \ ^{\circ}\text{C}; \ T_{mb} = 25 \ ^{\circ}\text{C}; & - & - \\ \text{see Figure 4 and 1} & - & - \\ \text{total power dissipation} & T_{mb} = 25 \ ^{\circ}\text{C}; \text{see Figure 2} & - & - \\ \hline \text{characteristics} & & & \\ \text{gate-drain charge} & V_{GS} = 5 \ ^{\circ}\text{C}; \text{see Figure 14} & - & 9 \\ V_{DS} = 32 \ ^{\circ}\text{V}; \text{see Figure 14} & - & 9 \\ \hline \text{aracteristics} & & & \\ \hline \text{drain-source on-state} & V_{GS} = 5 \ ^{\circ}\text{V}; \text{ lp} = 20 \ ^{\circ}\text{A}; & - & 12 \\ \hline \text{resistance} & T_j = 25 \ ^{\circ}\text{C}; \text{see Figure 12} \text{ and} & 1 \\ \hline 13 & & \\ \hline \text{non-repetitive} & I_D = 56 \ ^{\circ}\text{A}; \ V_{sup} \leq 40 \ ^{\circ}\text{V}; & - \\ \hline \text{drain-source} & R_{GS} = 50 \ ^{\circ}\text{Q}; \ ^{\circ}\text{V}_{GS} = 5 \ ^{\circ}\text{V}; \end{array}$	$\begin{array}{ccccccc} drain-source \ voltage & T_j \geq 25\ ^\circ C;\ T_j \leq 175\ ^\circ C & - & - & 40\\ drain \ current & V_{GS} = 5\ V;\ T_{mb} = 25\ ^\circ C; & - & - & 56\\ see\ \underline{Figure\ 4}\ and\ \underline{1} & - & - & 56\\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$

nexperia

N-channel TrenchMOS logic level FET

2. Pinning information

Table 2.	Pinning			
Pin	Symbol	Description	Simplified outline	Graphic symbol
1, 2, 3	S	source	mb	D
4	G	gate		, T
mb	D	mounting base; connected to drain		G HEAD
			SOT669 (LFPAK)	

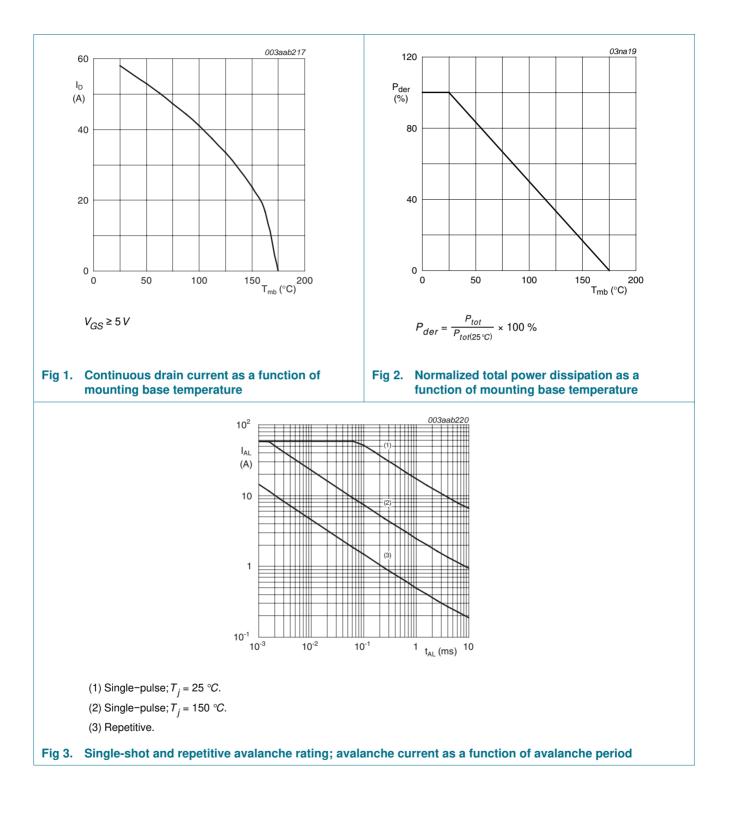
3. Ordering information

Table 3. Orderin	g informatio	1	
Type number	Package		
	Name	Description	Version
BUK9Y14-40B	LFPAK	plastic single-ended surface-mounted package (LFPAK); 4 leads	SOT669

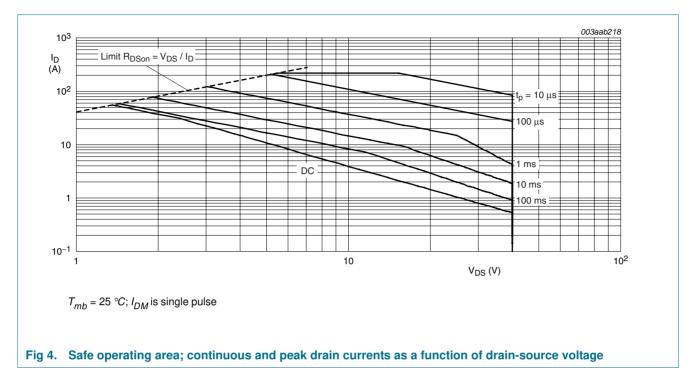
4. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

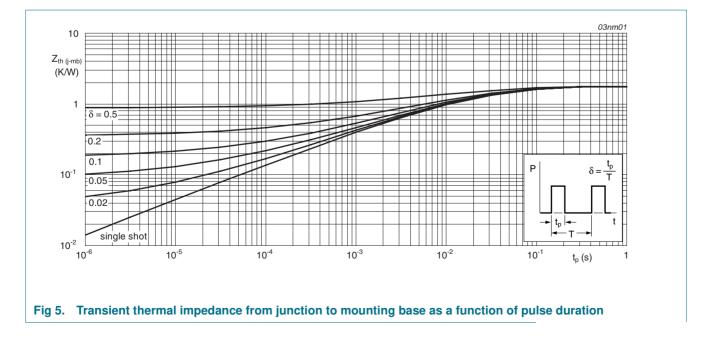

-	· · · · · ·			
Parameter	Conditions	Min	Max	Unit
drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$	-	40	V
gate-source voltage		15	15	V
drain current	T_{mb} = 25 °C; V_{GS} = 5 V; see <u>Figure 4</u> and <u>1</u>	-	56	А
	T_{mb} = 100 °C; V_{GS} = 5 V; see <u>Figure 1</u>	-	40	А
peak drain current	T_{mb} = 25 °C; $t_p \leq$ 10 $\mu s;$ pulsed; see Figure 4	-	226	А
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	85	W
storage temperature		-55	175	°C
junction temperature		-55	175	°C
ne ruggedness				
non-repetitive drain-source avalanche energy	$\label{eq:ld} \begin{array}{l} I_D = 56 \text{ A}; V_{sup} \leq 40 \text{ V}; R_{GS} = 50 \ \Omega; V_{GS} = 5 \text{ V}; \\ T_{j(init)} = 25 \ ^\circ\text{C}; \ \text{unclamped} \end{array}$	-	89	mJ
repetitive drain-source avalanche energy	see Figure 3	[1][2] _ [3]	-	J
drain diode				
source current	T _{mb} = 25 °C	-	56	А
peak source current	$t_p \le 10 \ \mu s$; pulsed; T_{mb} = 25 °C	-	226	А
	gate-source voltage drain current peak drain current total power dissipation storage temperature junction temperature non-repetitive drain-source avalanche energy repetitive drain-source avalanche energy rain diode source current	$\label{eq:result} \begin{array}{ll} \mbox{drain-source voltage} & T_j \geq 25 \ ^{\circ}\mbox{C}; \ T_j \leq 175 \ ^{\circ}\mbox{C} \\ \mbox{gate-source voltage} \\ \mbox{drain current} & \frac{T_{mb} = 25 \ ^{\circ}\mbox{C}; \ V_{GS} = 5 \ V; \ see \ Figure \ 4 \ and \ 1}{T_{mb} = 100 \ ^{\circ}\mbox{C}; \ V_{GS} = 5 \ V; \ see \ Figure \ 1} \\ \mbox{peak drain current} & T_{mb} = 25 \ ^{\circ}\mbox{C}; \ t_p \leq 10 \ \mu\mbox{s}; \ pulsed; \ see \ Figure \ 4} \\ \mbox{total power dissipation} & T_{mb} = 25 \ ^{\circ}\mbox{C}; \ see \ Figure \ 2} \\ \mbox{storage temperature} \\ \mbox{junction temperature} \\ \mbox{permettive drain-source avalanche energy} \\ \mbox{repetitive drain-source} & see \ Figure \ 3 \\ \mbox{repetitive drain-source} \\ \mbox{avalanche energy} \\ \mbox{source current} & T_{mb} = 25 \ ^{\circ}\mbox{C} \\ \end{tabular}$	$\begin{tabular}{ c c } & T_j \ge 25\ ^{\circ}C;\ T_j \le 175\ ^{\circ}C & - & & & & & & & & & & & & & & & & & $	$\begin{array}{cccc} drain-source voltage & T_j \geq 25\ ^{\circ}C;\ T_j \leq 175\ ^{\circ}C & - & 40\\ \\ gate-source voltage & 15 & 15\\ drain current & T_{mb} = 25\ ^{\circ}C;\ V_{GS} = 5\ V;\ see\ Figure\ 4\ and\ 1\ & - & 56\\ \hline T_{mb} = 100\ ^{\circ}C;\ V_{GS} = 5\ V;\ see\ Figure\ 1\ & - & 40\\ \\ peak\ drain\ current & T_{mb} = 25\ ^{\circ}C;\ t_p \leq 10\ \mu s;\ pulsed;\ see\ Figure\ 4\ & - & 226\\ total\ power\ dissipation & T_{mb} = 25\ ^{\circ}C;\ see\ Figure\ 2\ & - & 85\\ storage\ temperature & -55\ & 175\\ junction\ temperature & -55\ & 175\\ junction\ temperature & -55\ & 175\\ \hline re\ ruggedness & & \\ non-repetitive\ drain-source\ avalanche\ energy & \\ \begin{array}{ccccccccccccccccccccccccccccccccccc$

[1] Single-pulse avalanche rating limited by maximum junction temperature of 175 °C.


[2] Repetitive avalanche rating limited by average junction temperature of 170 °C.

[3] Refer to application note AN10273 for further information.

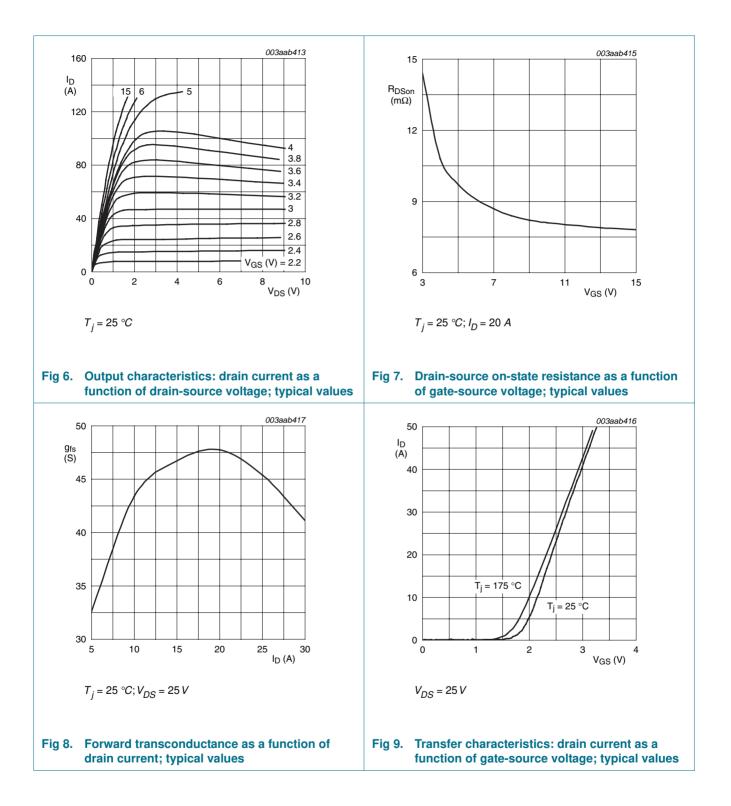
N-channel TrenchMOS logic level FET


N-channel TrenchMOS logic level FET

5. Thermal characteristics

Table 5.Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{\text{th(j-mb)}}$	thermal resistance from junction to mounting base	see <u>Figure 5</u>	-	-	1.8	K/W

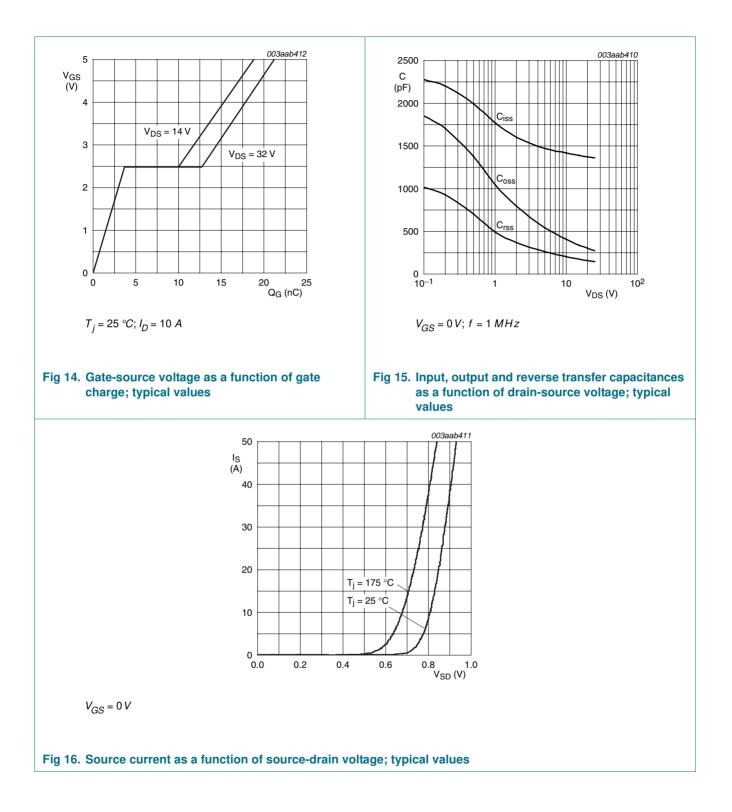


BUK9Y14-40B_3

6. Characteristics

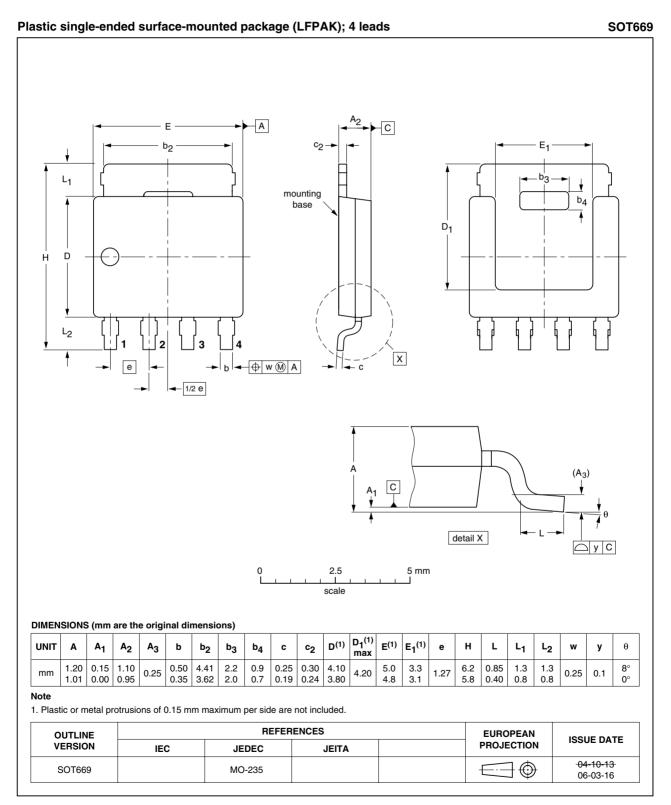
Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Static cha	aracteristics					
V _{(BR)DSS}	drain-source breakdown voltage	$\begin{array}{l} I_D = 250 \ \mu \text{A}; \ \text{V}_{\text{GS}} = 0 \ \text{V}; \\ T_j = 25 \ ^{\circ}\text{C} \end{array}$	40	-	-	V
		$\begin{split} I_D &= 250 \ \mu\text{A}; \ \text{V}_{\text{GS}} = 0 \ \text{V}; \\ T_j &= -55 \ ^{\circ}\text{C} \end{split}$	36	-	-	V
V _{GS(th)}	gate-source threshold voltage	$\label{eq:ID} \begin{split} I_D &= 1 \text{ mA; } V_{DS} = V_{GS}; \\ T_j &= -55 \ ^\circ\text{C}; \text{ see } \frac{\text{Figure } 10}{\text{Figure } 10} \end{split}$	-	-	2.3	V
		$\begin{split} I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C}; \\ \text{see } \underline{\text{Figure 11}} \text{ and } \underline{10} \end{split}$	1.1	1.5	2	V
		$\begin{split} I_D &= 1 \text{ mA; } V_{DS} = V_{GS}; \\ T_j &= 175 \text{ °C; see } \frac{\text{Figure 10}}{\text{Figure 10}} \end{split}$	0.5	-	-	V
I _{DSS}	drain leakage current	$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V};$ T _j = 175 °C	-	-	500	μA
		V_{DS} = 40 V; V_{GS} = 0 V; T_j = 25 °C	-	0.02	1	μA
I _{GSS}	gate leakage current	$V_{DS} = 0 \ V; \ V_{GS} = 20 \ V; \ T_j = 25 \ ^\circ C$	-	2	100	nA
		$V_{DS} = 0 \text{ V}; V_{GS} = -20 \text{ V};$ $T_j = 25 \text{ °C}$	-	2	100	nA
R _{DSon} drain-source on-state resistance	V_{GS} = 5 V; I _D = 20 A; T _j = 175 °C; see <u>Figure 12</u>	-	-	26	mΩ	
		$V_{GS} = 4.5 \text{ V}; \text{ I}_{D} = 20 \text{ A}; \text{ T}_{j} = 25 ^{\circ}\text{C}$	-	-	16	mΩ
	$V_{GS} = 10 \text{ V}; \text{ I}_D = 20 \text{ A}; \text{ T}_j = 25 ^\circ\text{C}$	-	9	11	mΩ	
		$V_{GS} = 5 \text{ V}; \text{ I}_{D} = 20 \text{ A}; \text{ T}_{j} = 25 \text{ °C};$ see Figure 12 and 13	-	12	14	mΩ
Source-d	rain diode					
V _{SD}	source-drain voltage	$I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ see Figure 16	-	0.85	1.2	V
t _{rr}	reverse recovery time	$I_{S} = 20 \text{ A}; \text{ d}I_{S}/\text{d}t = -100 \text{ A}/\mu\text{s};$	-	50	-	ns
Q _r	recovered charge	$V_{GS} = 0 V; V_{DS} = 30 V$	-	26	-	nC
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 10 \text{ A}; V_{DS} = 32 \text{ V}; V_{GS} = 5 \text{ V};$	-	21	-	nC
Q _{GS}	gate-source charge	see Figure 14	-	3.7	-	nC
Q _{GD}	gate-drain charge		-	9	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 25 V;$	-	1360	1800	pF
C _{oss}	output capacitance	f = 1 MHz; T _j = 25 °C; see Figure 15	-	274	330	pF
C _{rss}	reverse transfer capacitance		-	147	200	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 2.5 \Omega;$	-	15	-	ns
t _r	rise time	V_{GS} = 5 V; $R_{G(ext)}$ = 10 Ω	-	34	-	ns
t _{d(off)}	turn-off delay time		-	68	-	ns
t _f	fall time		-	42	-	ns

N-channel TrenchMOS logic level FET



Nexperia

BUK9Y14-40B N-channel TrenchMOS logic level FET



N-channel TrenchMOS logic level FET

N-channel TrenchMOS logic level FET

7. Package outline

Fig 17. Package outline SOT669 (LFPAK)

N-channel TrenchMOS logic level FET

8. Revision history

Table 7.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK9Y14-40B_3	20080602	Product data sheet		BUK9Y14-40B_2
Modifications:	 <u>Table 4</u> V_{DS} 	temperature operating ran	ge corrected	
BUK9Y14-40B_2	20080523	Product data sheet	-	BUK9Y14-40B_1
BUK9Y14-40B_1	20070903	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

9.2 **Definitions**

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For additional information, please visit: <u>http://www.nexperia.com</u>

For sales office addresses, send an email to: salesaddresses@nexperia.com

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile 1
1.1	General description 1
1.2	Features and benefits 1
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 4
6	Characteristics 5
7	Package outline 9
8	Revision history 10
9	Legal information 11
9.1	Data sheet status 11
9.2	Definitions 11
9.3	Disclaimers 11
9.4	Trademarks 11
10	Contact information 11
11	Contents 12