

Thyristor High Voltage, Surface Mountable Phase Control SCR, 16 A

PRODUCT SUMMARY								
Package	TO-263AB (D ² PAK)							
Diode variation	Single SCR							
I _{T(AV)}	10 A							
V _{DRM} /V _{RRM}	800 V, 1200 V							
V _{TM}	1.4 V							
I _{GT}	60 mA							
TJ	- 40 °C to 125 °C							

FEATURES

- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Designed and qualified according JEDEC-JESD47
- Compliant to RoHS Directive 2002/95/EC
- Halogen-free according to IEC 61249-2-21
 definition

APPLICATIONS

- Input rectification (soft start)
- Vishay input diodes, switches and output rectifiers which are available in identical package outlines

DESCRIPTION

The VS-16TTS..SPbF high voltage series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology used has reliable operation up to 125 °C junction temperature.

OUTPUT CURRENT IN TYPICAL APPLICATIONS									
APPLICATIONS	SINGLE-PHASE BRIDGE	THREE-PHASE BRIDGE	UNITS						
NEMA FR-4 or G-10 glass fabric-based epoxy with 4 oz. (140 μm) copper	2.5	3.5							
Aluminum IMS, R _{thCA} = 15 °C/W	6.3	9.5	A						
Aluminum IMS with heatsink, $R_{thCA} = 5 \text{ °C/W}$	14.0	18.5							

Note

• $T_A = 55 \text{ °C}, T_J = 125 \text{ °C}, \text{ footprint } 300 \text{ mm}^2$

MAJOR RATINGS AND CHARACTERISTICS									
SYMBOL	CHARACTERISTICS	VALUES	UNITS						
I _{T(AV)}	Sinusoidal waveform	10	٨						
I _{RMS}		16	A						
V _{RRM} /V _{DRM}		800/1200	V						
I _{TSM}		200	А						
V _T	10 A, T _J = 25 °C	1.4	V						
dV/dt		500	V/µs						
dl/dt		150	A/µs						
TJ		- 40 to 125	°C						

VOLTAGE RATINGS					
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM PEAK DIRECT VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA		
VS-16TTS08SPbF	800	800	10		
VS-16TTS12SPbF	1200	1200	10		

Revision: 23-Aug-11

Document Number: 94589

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

RoHS

COMPLIANT

HALOGEN

FREE

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS									
DADAMETED	SYMBOL	TEST CONDITIONS	VALUES						
PARAMETER	STNIDUL	TEST CONDITIONS	TYP. MAX.						
Maximum average on-state current	I _{T(AV)}	$T_{C} = 98 \text{ °C}, 180^{\circ} \text{ conduction, half sine wave}$	10						
Maximum RMS on-state current	I _{RMS}		16						
Maximum peak, one-cycle,		10 ms sine pulse, rated V _{RRM} applied	170						
non-repetitive surge current	ITSM	10 ms sine pulse, no voltage reapplied	200						
Maximum 12t for fusing	12+	10 ms sine pulse, rated V _{RRM} applied	144	A20					
	1-1	10 ms sine pulse, no voltage reapplied	200	A-S					
Maximum I²√t for fusing	l²√t	t = 0.1 ms to 10 ms, no voltage reapplied	2000	A²√s					
Maximum on-state voltage drop	V _{TM}	10 A, T _J = 25 °C	1.4	V					
On-state slope resistance	r _t	T 125 °C	24.0	mΩ					
Threshold voltage	V _{T(TO)}	1J = 125 C	1.1	V					
Maximum reverse and direct lookage ourrent	1 /1	$T_J = 25 \text{ °C}$	0.5						
Maximum reverse and direct leakage current	IRM/ IDM	$T_J = 125 \text{ °C}$	10						
Holding current	I _H	Anode supply = 6 V, resistive load, initial $I_T = 1 A$	- 100	IIIA					
Maximum latching current	ΙL	Anode supply = 6 V, resistive load	200						
Maximum rate of rise of off-state voltage	dV/dt		500	V/µs					
Maximum rate of rise of turned-on current	dl/dt		150	A/µs					

TRIGGERING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum peak gate power	P _{GM}		8.0					
Maximum average gate power	P _{G(AV)}		2.0	VV				
Maximum peak positive gate current	+ I _{GM}		1.5	А				
Maximum peak negative gate voltage	- V _{GM}		10	V				
	I _{GT}	Anode supply = 6 V, resistive load, T_J = - 10 °C	90					
Maximum required DC gate current to trigger		Anode supply = 6 V, resistive load, $T_J = 25 \text{ °C}$	60	mA				
		Anode supply = 6 V, resistive load, T_J = 125 °C	35					
		Anode supply = 6 V, resistive load, T_J = - 10 °C	3.0					
Maximum required DC gate voltage to trigger	V _{GT}	Anode supply = 6 V, resistive load, $T_J = 25 \text{ °C}$	2.0	N				
		Anode supply = 6 V, resistive load, T_J = 125 °C	1.0	v				
Maximum DC gate voltage not to trigger V		T 105 °C V Detectualue	0.25	1				
Maximum DC gate current not to trigger	I _{GD}	$i_{\rm J} = 125$ C, $v_{\rm DRM} = nated value$	2.0	mA				

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Typical turn-on time	t _{gt}	T _J = 25 °C	0.9	
Typical reverse recovery time	t _{rr}	T 105 %C	4	μs
Typical turn-off time	tq	IJ = 125 C	110	

Revision: 23-Aug-11

Document Number: 94589

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum junction and storage temperature range	T _J , T _{Stg}		- 40 to 125	°C				
Soldering temperature	Ts	For 10 s (1.6 mm from case)	240					
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	1.3	°C 111				
Typical thermal resistance, junction to ambient	R _{thJA}	PCB mount ⁽¹⁾	40	0/11				
Approvimeto weight			2	g				
Approximate weight			0.07	oz.				
Marking davias		Case style D2DAK (SMD 220)	16TTS08S					
warking device		Case Sigie D-PAR (SiviD-220)	16TTS12S					

Note

⁽¹⁾ When mounted on 1" square (650 mm²) PCB of FR-4 or G-10 material 4 oz. (140 µm) copper 40 °C/W.

For recommended footprint and soldering techniques refer to application note #AN-994.

Fig. 2 - Current Rating Characteristics

Fig. 3 - On-State Power Loss Characteristics

Fig. 4 - On-State Power Loss Characteristics

Revision: 23-Aug-11

3

Document Number: 94589

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 7 - On-State Voltage Drop Characteristics

Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

Revision: 23-Aug-11	4	Document Number: 94589
For technical questions within your regio	on: DiodesAmericas@vishay.com, DiodesAsia@vishay.c	com, <u>DiodesEurope@vishay.com</u>
THIS DOCUMENT IS SUBJECT TO CHAN	IGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED	D HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPE	ECIFIC DISCI AIMERS, SET FORTH AT www.vishav.cc	om/doc?91000

VS-16TTS..SPbF Series

Vishay Semiconductors

ORDERING INFORMATION TABLE

www.vishay.com

Device code	vs-	16	т	т	S	12	S	TRL	PbF		
	1	2	3	4	5	6	(7)	8	9	•	
	1 .	- Visl	hay Sen	niconduc	ctors pro	oduct					
	2	- Cur	Current rating								
	3	- Circ	Circuit configuration:								
		T =	T = Single thyristor								
	4	- Pac	kage:								
		T =	TO-220	AC							
	5	- Тур	e of silio	con:							
		S =	Standa	rd recov	ery rect	ifier		ſ			
	6	- Vol	tage rati	ng: Volt	age cod	le x 100	= V _{RRM}	л — —	08 = 80 12 = 12	V 00 V 00	
	7.	- S=	S = D ² PAK version								
	8 ·	- • No	• None = Tube								
		• TF	RL = Tap	be and re	eel (left	oriented	d)				
		• TI	RR = Ta	pe and r	eel (righ	nt orient	ed)				
	9	- PbF	= = Leac	l (Pb)-fre	ee and I	RoHS c	omplian	ıt			

LINKS TO RELATED DOCUMENTS						
Dimensions	www.vishay.com/doc?95046					
Part marking information	www.vishay.com/doc?95054					
Packaging information	www.vishay.com/doc?95032					

Revision: 23-Aug-11 Document Number: 94589 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

5

Outline Dimensions

Vishay Semiconductors

D²PAK

Conforms to JEDEC outline D²PAK (SMD-220) в Pad layout (2)(3)A 11.00 MIN.-(E) F (0.43)ŧ (3) L1 4 (|(0.38)^{MIN.} (D1) (3) Detail A D 17.90 (0.70) Н 15.00 (0.625) (2) З 0.15)^{0.01} Ľ L2 Ĥ ţ В В 2.32 MIN. (0.08) 2.64 (0.103) 2.41 (0.096) (3)Ċ 2 x b2 С View A - A 2 x h // ± 0.004 M B ⊕ 0.010 M A M B Base Plating (4)Metal 2 x e Н b1, b3 Gauge plane c1 (4) (c) В 0° to 8° ŧ. Seating Lead assignments plane L3 4 A1 Lead tip (b, b2) Diodes Section B - B and C - C 1. - Anode (two die)/open (one die) Scale: None 2., 4. - Cathode Detail "A"

3. - Anode

Rotated 90 °CW Scale: 8:1

SYMBOL	MILLIM	ETERS	INC	HES	NOTES		SYMBOL		MILLIMETERS		INCHES	
STWBOL	MIN.	MAX.	MIN.	MAX.	NOTES	NOTED	STWDUL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190			D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010			E	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039			E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4		е	2.54	BSC	0.100	BSC	
b2	1.14	1.78	0.045	0.070			Н	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4		L	1.78	2.79	0.070	0.110	
с	0.38	0.74	0.015	0.029			L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4		L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065			L3	0.25	BSC	0.010	BSC	
D	8.51	9.65	0.335	0.380	2		L4	4.78	5.28	0.188	0.208	

Notes

 $^{(1)}\,$ Dimensioning and tolerancing per ASME Y14.5 M-1994 $\,$

(2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body

⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

⁽⁵⁾ Datum A and B to be determined at datum plane H

⁽⁶⁾ Controlling dimension: inch

⁽⁷⁾ Outline conforms to JEDEC outline TO-263AB

Document Number: 95046 For technical questions within your region, please contact one of the following: Revision: 31-Mar-11 DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

www.vishay.com

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

DIMENSIONS in millimeters and inches

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.