

AP1018

18V Dual H-Bridge Motor Driver IC

1. General Description

The AP1018 is a Dual H-Bridge small motor driver corresponding to the motor drive voltage 18V. Since the AP1018 has two output channels, it is capable of driving two DC motors or one stepper motor. It can be used up to peak current of 4.5A, so it can be used safely even with a motor that requires a large current at the start of driving.

Also it has under voltage detection and thermal shut down circuits as a protection circuit. The AP1018 is housed in a high heat dissipation 24-pin QFN package (4mm x 4mm) with an exposed pad. It is a motor driver IC that realizes reduction of mounting area.

2. Features

Control Supply Voltage 2.7 to 5.5V

Logic Input Power Supply
 1.62V to Control Supply Voltage (VC)

Motor Drive Voltage 2 to 18V
Maximum Output Current (DC) 1.3A (max)

Maximum Output Current (Peak)
 3.0A (Ta = 25°C, within 10ms in every 200ms)

4.5A (Ta = 25° C, within 5ms in every 200ms)

H-Bridge On Resistance RON (TOP+BOT) = 0.36Ω (typ) (Ta = 25°C)

Power Saving Function VM Power Consumption is less than 2μA (Ta = 25°C)

• Under Voltage Lockout Circuit (UVLO)

Thermal Shutdown Circuit (TSD)

Package 24-pin QFN (4.0mm × 4.0mm)

3. Table of Contents

1. General Description	
2. Features	1
3. Table of Contents	2
4. Block Diagram	3
5. Pin Configurations and Functions	4
■ Pin Configurations	
■ Functions	4
■ Terminal Equivalent Circuits	5
6. Absolute Maximum Ratings	6
7. Recommended Operating Conditions	6
8. Electrical Characteristics	
9. Functional Descriptions	9
9.1 Control Logic	9
9.2 The Basic Configuration of The Motor Driver Unit	9
9.3 Protection Functions	
10. Recommended External Circuit	13
■ Recommended External Circuit	13
■ Recommended External Components	13
11. Package	14
Outline Dimensions	14
■ Recommended Land Pattern	14
■ Marking	
12. Ordering Guide	
13. Revision History	
IMPORTANT NOTICE	17

4. Block Diagram

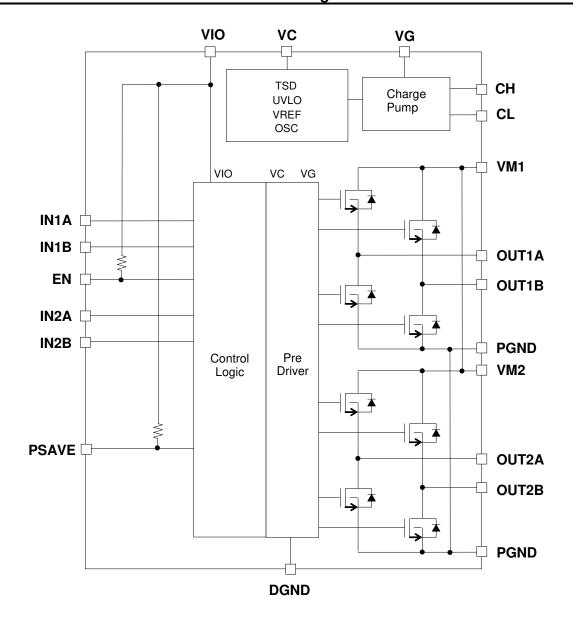
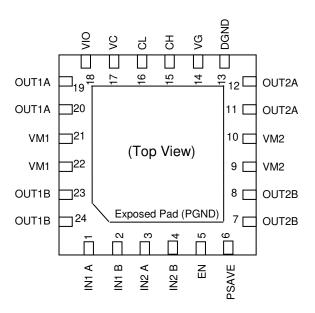



Figure 1. Block Diagram

5. Pin Configurations and Functions

■ Pin Configurations

■ Functions

Din	Nome	1/0	Function	Note			
Pin	Name	I/O	Function	Note			
Number		(Note 1)					
14	VG	0	Connection Terminal for Stabilizing Capacitor				
15	H	I/O	Connection Terminal for Charge Pump Capacitor				
16	CL	I/O	Connection Terminal for Charge Pump Capacitor				
21, 22	VM1	Р	Motor Driver Power Supply 1	(Note 3)			
19, 20	OUT1A	0	Motor Driver Output Terminal 1A				
23, 24	OUT1B	0	Motor Driver Output Terminal 1B				
Exposed Pad	PGND	Р	Ground Terminal	(Note 2)			
11, 12	OUT2A	0	Motor Driver Output Terminal 2A				
7, 8	OUT2B	0	Motor Driver Output Terminal 2B				
9, 10	VM2	Р	Motor Driver Power Supply 2	(Note 3)			
4	IN2B		Control Signal Input Terminal 2B				
3	IN2A		Control Signal Input Terminal 2A				
2	IN1B	I	Control Signal Input Terminal 1B				
1	IN1A		Control Signal Input Terminal 1A				
13	DGND	Р	Ground Terminal				
5	EN	I	Output Enable Terminal	Built-in 100kΩ pull-up			
6	PSAVE	I	Power Save Terminal	Built-in 100kΩ pull-up			
18	VIO	Р	Logic Input Power Supply Terminal				
17	VC	Р	Control System Power Supply Terminal				

Note 1. I (Input pin), O (Output pin), P (Power pin)

Note 2. The exposed pad should be connected to the DGND pin for heat dissipation.

Note 3. VM1 (pin No.21 and 22) and VM2 (pin No.9 and 10) should be connected to the same power supply voltage.

■ Terminal Equivalent Circuits

- remina	i Equivai	ent Circuits	
Pin No.	Name	Function	Equivalent Circuits
18	VIO	Logic Input Power Supply	O
17	VC	Control System Power Supply	<u></u>
5 6	EN PSAVE	Logic Input (Built-in 100kΩ pull-up)	VIO 100kΩ 2kΩ ————————————————————————————————————
1 2 3 4	IN1A IN1B IN2A IN2B	Control Signal Input	2kΩ =
21,22 9,10	VM1 VM2	Motor Driver Power Supply (VM1 (pin No. 21, 22), VM2 (pin No. 9, 10) to connect the same power supply voltage)	VM1, VM2
19, 20 23, 24 11, 12 7, 8	OUT1A OUT1B OUT2A OUT2B	Motor Driver Output	OUT1A OUT2A OUT1B OUT2B
14 15	VG CH	Connection Terminal for Stabilizing Capacitor Connection Terminal for Charge Pump Capacitor	OVG OCH OVM1, VM2
16	CL	Connection Terminal for Charge Pump Capacitor	O VC O CL O PGND
13 Exposed Pad	DGND PGND	Digital Ground Power system ground	DGND PGND

6.	Absolute	Maximum	Ratings
----	-----------------	---------	---------

Parameter	Symbol	Min.	Max.	Unit	Remarks
Control Supply Voltage	VC	-0.5	6.0	V	
Logic Input Voltage	VIO	-0.5	6.0	V	VIO ≤ VC (Note 6)
Motor Driver Operating Voltage	VM	-0.5	19	V	
VIO Level Terminal Voltage (PSAVE,EN,IN1A,IN1B,IN2A,IN2B)	Vterminal1	-0.5	5.5	V	
VM Level Terminal Voltage (OUT1A,OUT1B,OUT2A,OUT2B)	Vterminal2	-0.5	19	V	
VG, CH Terminal Voltage	Vterminal3	-0.5	25	V	
CL Terminal Voltage	Vterminal4	-0.5	6.0	V	
Maximum DC Output Current	lloaddcMD	-	1.3	Α	OUTnA and OUTnB terminal
Maximum Peak Output Current	lloadpeakMD	-	3 4.5	А	OUTnA and OUTnB terminal within 10ms in 200ms within 5ms in 200ms
Power Dissipation	PD	-	1625	mW	Ta = 85°C (Note 5)
Operating Temperature Range	Ta	-30	85	°C	
Maximum Junction Temperature	Tj	-	150	°C	
Storage Temperature Range	Tstg	-65	150	°C	

- Note 4. All above voltages are with respect to GND.
- Note 5. This is calculated as θ JA= 40° C/W using a 4-layer board. The exposed pad must be connected to GND. SEMI JEDEC JESD51-6 and JESD51-7 compliant boards are used.
- Note 6. Logic Input Power Supply (VIO) needs to be turned on at the same time or earlier than Control System Power Supply (VC).

WARNING: Operation at or beyond these limits may result in permanent damage to the device.

Normal operation is not guaranteed at these extremes.

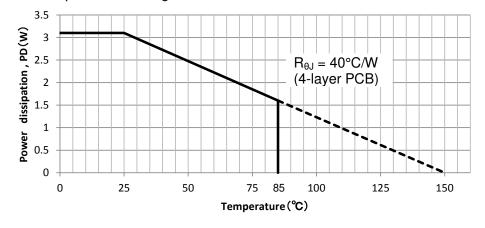
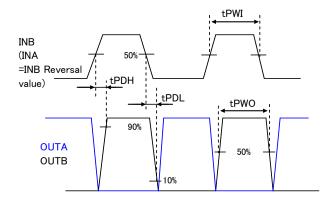


Figure 2. Maximum Power Dissipation

7. Recommended Operating Conditions


Parameter	Symbol	Min.	Тур.	Max.	Unit
Control Supply Voltage	VC	2.7	3.3	5.5	V
Logic Input Voltage	VIO	1.62	1.8/3.3	VC	V
Motor Power Supply Voltage	VM	2.0	-	18	V
Input Frequency Range (50% duty)	Fin	1	-	200	kHz

8. Electrical Characteristics

 $(Ta = 25^{\circ}C, VM = 15V, VC = 3.3V, unless otherwise specified.)$ Symbol Conditions Min. Unit Parameter Тур. Max. Charge Pump VG = VC + VM Charge Pump Voltage VG 18.0 18.2 18.3 ٧ INnA = "L", INnB = "L" VG = VC + VM - 0.3V Charge Pump wake up time 0.1 3 1 t_{VG} ms CVG = 0.1uFUVLO VC under voltage lock out voltage VCuv ٧ 1.9 2.2 2.5 TSD Thermal shutdown temperature 150 200 °C T_{DET} 175 (Note 7) Temperature hysteresis °C 20 30 40 T_{DETHYS} (Note 7) Quiescent Current VM quiescent current at no power VIO = VC = 0V2 μΑ I_{VMNOPOW+} PSAVE = "L", EN = "H" INnA = "L", INnB = "L" PSAVE = "L", EN = "H" VM quiescent current at Standby 15 70 **IVMSTBY** μΑ VC quiescent current at Standby 150 300 μΑ **I**VCSTBY INnA = "L", INnB = "L" VC quiescent current at power save PSAVE = "H", EN = "H" _ 1 μΑ IVCPSAVE VC quiescent current at PWM INnA= 200kHz, 1 2 mΑ I_{VCPWM} operation INnB = "H" Motor Driver VC = 3.3V, Iload On-resistance 1 =100mA 0.25 (High side or Low side) 0.18 Ω R_{ON1} $Ta = 25^{\circ}C$ On-resistance 2 VC = 3.3V, Iload = 1.2A (High side or Low side) (Note 7) R_{ON2} $Ta = 25^{\circ}C$ 0.22 0.27 Ω (Equivalent Tj = 85° C) On-resistance 3 VC = 3.3V, Iload = 1.2A (High side or Low side) (Note 7) $Ta = 85^{\circ}C$ 0.27 0.32 Ω R_{ON3} (Equivalent Tj = 150°C) Body diode forward voltage $I_{\rm F} = 100 \, {\rm mA}$ 0.8 1.2 ٧ V_{FMD} -Output delay time (INn:"H"→"L" to OUTn:"H"→"L") tr = tf = 10ns0.5 **t**PDL μs (Note 8) Output delay time (INn:"L"→"H" to OUTn:"L"→"H") t_{PDH} tr = tf = 10ns1.0 μs (Note 8) Output delay time (INn:"L"→"H" to OUTn:Hi-Z→"H") tr = tf = 10ns0.5 t_{PDZH} μs (Note 8) Output delay time (INn:"H"→"L" to OUTn:"H"→Hi-Z) 2.0 tr = tf = 10ns**t**PDHZ us (Note 8) H-bridge output pulse width $t_{PWI} = 1.0 \mu s$, 0.6 tpwo us (Note 8) tr = tf = 10nsControl logic Input High level voltage 0.7×VIO V_{IH} ٧ (INnA, INnB, EN, PSAVE) VIO = 1.62V~5.5V Input Low level voltage V_{IL} 0.3×VIO ٧ (INnA, INnB, EN, PSAVE)

Note 7. Not tested in production.

Note 8. Refer to Figure 3.

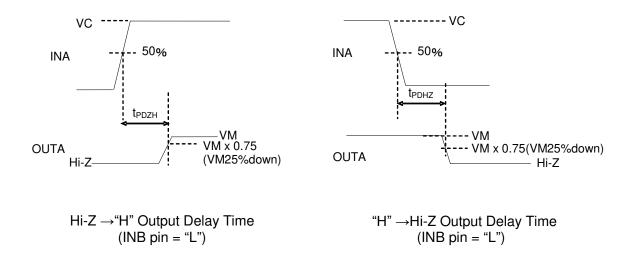


Figure 3. Timing Chart of Output Propagation Delay Time and Pulse Width

9. Functional Descriptions

9.1 Control Logic

Input and Output statuses of each operation mode are shown below. (X: don't care)

PSAVE	EN	Input		Output OUTnA OUTnB		Operation Mode
FSAVE		INnA INnB				Operation wode
L	Н	L	L	Hi-Z	Hi-Z	Standby
L	Н	L	Н	L	Н	Reverse (CCW)
L	Н	Н	L	Н	L	Forward (CW)
L	Н	Н	Н	L	L	Brake
L	L	X	Χ	L	L	Brake
Н	Χ	Χ	Χ	Hi-Z	Hi-Z	Power Save (Note 9)

Note 9. TSD, UVLO, Internal charge pump and VREF circuits stop operation.

9.2 The Basic Configuration of The Motor Driver Unit

The AP1018 has the N-channel LDM CMOS FETs for both high and low sides of the output stage, so that small package can be adopted. The high-side FET is driven by VG voltage. VG = VM + VC is generated by the charge pump. VG voltage reaches the target value within 1ms (typ.) after the charge pump starts operation. The charge pump operates at 360kHz (typ). The low-side FET is driven by the VC voltage.

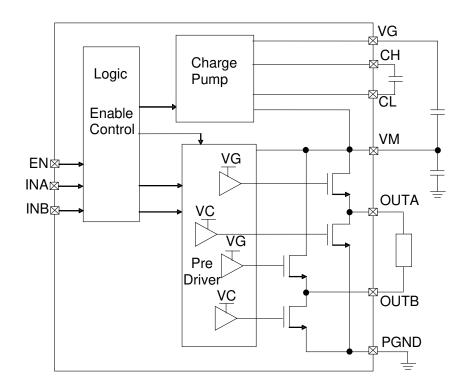


Figure 4. Equivalent Circuit of Motor Driver Block

The OSC block supplies a drive pulse to the charge pump. Logic input buffer is operated by the power supply from the VIO pin. Logic input power supply (VIO) should be turned on at the same time or earlier than the Control system power supply (VC). Logic Input Power Supply (VIO) is Control System Power Supply (VC) and turned on at the same time or earlier. (With applications such as the VIO is turned on later than the VC, it is recommend to connect a pull-up resistor about $500 \text{k}\Omega$ between the VIO and the VC pins to avoid an indefinite state of the circuit)

9.3 Protection Functions

The AP1018 has penetration current prevention, thermal shutdown and under voltage detection circuits.

• Penetration Current Prevention Circuit

MOSFETs are turned off for both high side and low side during the dead time period that is when the penetration current prevention circuit is in operation. The dead time is included in the H-Bridge output delay time of the electrical characteristics. Figure 5 shows the signal timing images.

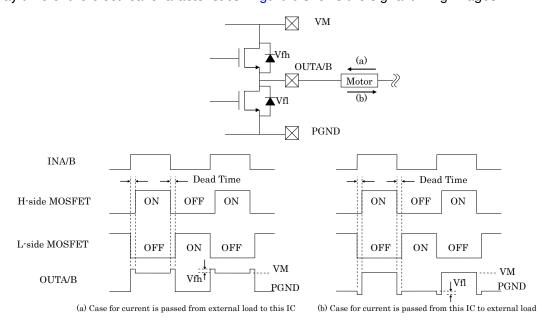


Figure 5. Difference In Output Terminal By Load Current Direction

Thermal Shut Down (TSD)

The AP1018 prevents damages from self-heating by setting OUTA and OUTB outputs Hi-Z when abnormal high temperature is detected. The AP1018 is able to return to normal operation as soon as the temperature drops to the level lower than the bottom detection threshold.

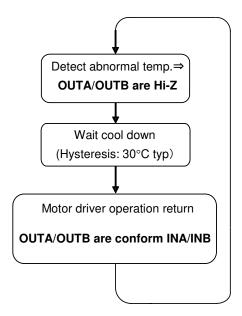


Figure 6. Detection of Abnormal Heat and Returning Normal Operation

Under Voltage Detection Circuits
 The H-bridge driver outputs become high-impedance by the under-voltage detection circuit (UVD) when the control power supply voltage (VC) is lower than the specified value.
 After the low-voltage detection, the H-bridge driver will be operational when the control power supply voltage (VC) exceeds the value of specified voltage VC_{UV} + hysteresis voltage VC_{UVHYS} (0.08Vtyp).

□ Timing Chart

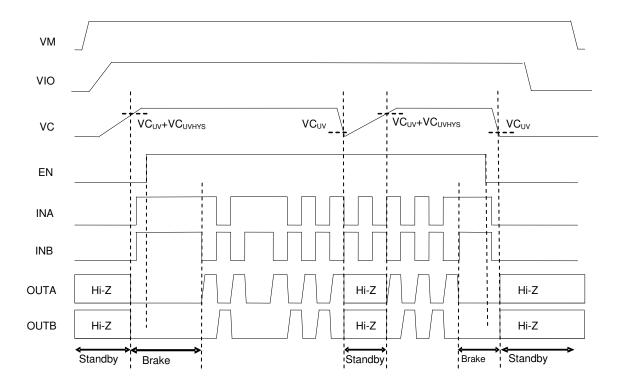


Figure 7. Timing Chart of Input and Output (In Cace of Under Voltage Detection)

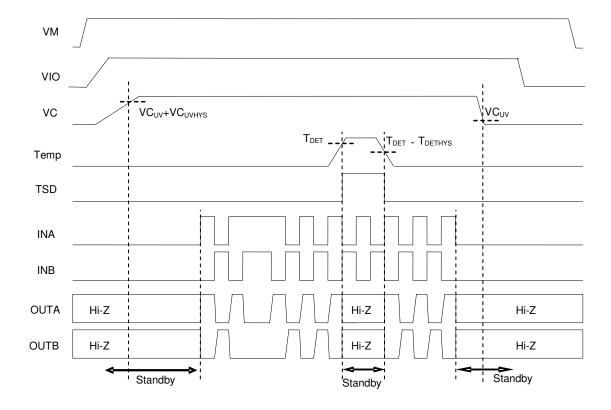


Figure 8. Timing Chart of Input and Output (In Cace of TSD Detection)

10. Recommended External Circuit

■ Recommended External Circuit

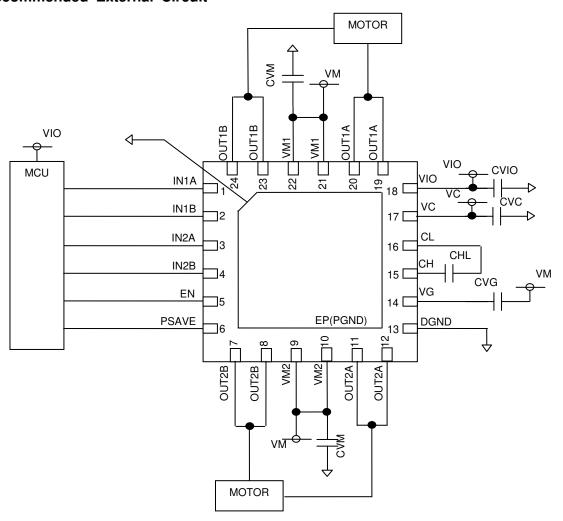
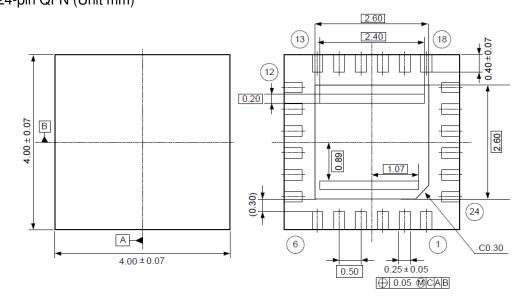
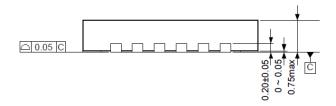


Figure 9. Recommended External Circuit

■ Recommended External Components

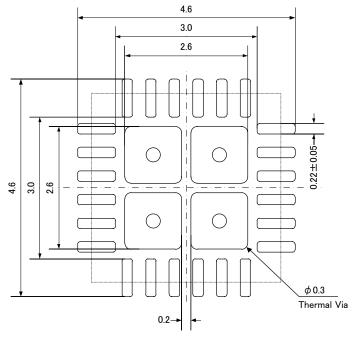
Items	Symbol	min	typ	max	Unit	Remark
Motor Driver Power Supply (decoupling capacitor)	CVM	1.0	ı	ı	μF	
VC Control Power Supply (decoupling capacitor)	CVC	0.1	1.0	-	μF	Ceramic Capacitor (Note 10)
VIO Control Power Supply (decoupling capacitor)	CVIO	0.1	1.0	-	μF	
Charge Pump Capacitor 1	CVG	0.047	0.1	0.22	μF	Ceramic Capacitor
Charge Pump Capacitor 2	CHL	0.047	0.1	0.22	μF	Ceramic Capacitor

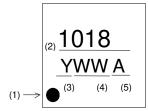

Note 10. Above values are examples. Please choose appropriate external components for your system board.


Note 12. The exposed pad should be connected to the DGND pin for heat dissipation.

Note 11. VM1 (pin No. 21 and 22) and VM2 (pin No. 9 and 10) should be connected to the same power supply voltage.

11. Package


■ Outline Dimensions 24-pin QFN (Unit mm)


■ Recommended Land Pattern

AP1018AEN: 24-pin QFN Package

[unit: mm]

■ Marking

- (1) No.1 pin Indication
- (2) Market No
- (3) Year Code (last digit of the year)
- (4) Week Code
- (5) Management Code

12. Ordering Guide

AP1018AEN

-30 ~ 85°C

24-pin QFN

13. Revision History

Date (YY/MM/DD)	Revision	Page	Contents
17/05/29	00	-	First Edition

IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.

- 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
- 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
- 3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
- 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
- 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
- 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM