
AN INFINEON TECHNOLOGIES COMPANY

Features

- GEN5 Non Punch Through (NPT) Technology
- Low V_{CE(on}
- 10µs Short Circuit Capability
- Square RBSOA
- Positive V_{CE(on)} Temperature Coefficient

Benefits

- Benchmark Efficiency for Motor Control Applications
- Rugged Transient Performance
- Excellent Current Sharing in Parallel Operation
- Qualified for Industrial Market

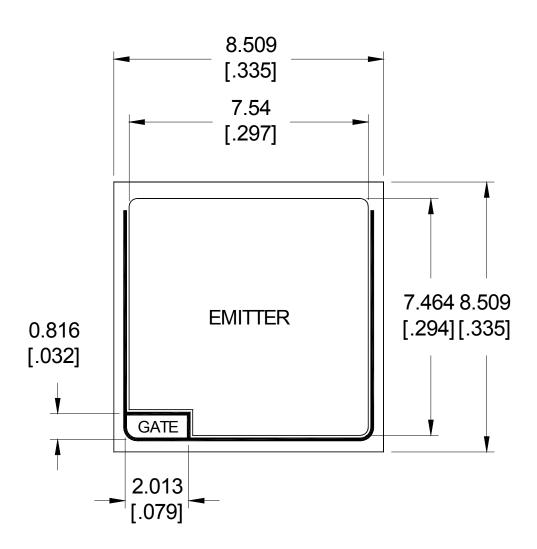
Die in Wafer Form

 V_{CES} = 600V $I_{C(Noml)}$ = 100A $V_{CE(on)}$ typ = 1.8V @ $I_{C(nom)}$ @ 25°C Motor Control IGBT Short Circuit Rated 150mm Wafer

Electrical Characteristics (Wafer Form)①

Parameter	Description	Min.	Тур.	Max.	Units	Test Conditions
$V_{CE(ON)}$	Collector-to-Emitter Saturation Voltage		1.8	2.1		$V_{GE} = 15V, I_{C} = 100A, T_{J} = 25^{\circ}C$
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	600			V	$V_{GE} = 0V$, $I_{CES} = 1mA$, $T_J = 25$ °C
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	3.5		5.5		$V_{GE} = V_{CE, I_C} = 250 \mu A, T_J = 25 ^{\circ} C$
I _{CES}	Zero Gate Voltage Collector Current			35	μΑ	$V_{CE} = 600V, V_{GE} = 0V, T_{J} = 25^{\circ}C$
I_{GES}	Gate Emitter Leakage Current			± 200	nΑ	$V_{CE} = 0V, V_{GE} = \pm 20V, T_{J} = 25^{\circ}C$

Mechanical Parameter


Nominal Backside Metal Composition, (Thickness)	Al - Ti - Ni/V - Ag (1kA -1kA - 4kA - 6kA)			
Nominal Front Metal Composition, (Thickness)	99% Al 1% Si (4µm)			
Dimensions	0.335" x 0.335"			
Wafer Diameter	150mm, with std. < 100> flat			
Wafer Thickness, Tolerance	85μm, +/-7μm			
Relevant Die Mechanical Dwg. Number	01-5564			
Minimum Street Width	100μm			
Reject Ink Dot Size	0.25 mm diameter minimum			
Ink Dot Location	Consistent throughout same wafer lot			
Recommended Storage Environment	Store in original container, in desiccate nitrogen, with no contamination			
Recommended Die Attach Conditions	For optimum electrical results, die attach temperature should not exceed 300°C.			

Note:

- ① This IR product is 100% tested at wafer level and is manufactured using established, mature and well characterized processes. Due to restrictions in die level processing, die may not be equivalent to standard package products and are therefore offered with a conditional performance guarantee. The above data sheet is based on IR sample testing under certain predetermined and assumed conditions, and are provided for illustration purposes only. Customers are encouraged to perform testing in actual proposed packaged and use conditions. IR die products are tested using IR-based quality assurance procedures and are manufactured using IR's established processes. Programs for customer-specified testing are available upon request. IR has experienced assembly yields of generally 95% or greater for individual die; however, customer's results will vary. Estimates such as those described and set forth in this data sheet for semiconductor die will vary depending on a number of packaging, handling, use and other factors. Sold die may not perform on an equivalent basis to standard package products and are therefore offered with a limited warranty as described in IR's applicable standard terms and conditions of sale. All IR die sales are subject to IR's applicable standard terms and conditions of sale, which are available upon request. For customers requiring a particular parameter to be guaranteed, special testing can be carried out or product can be purchased as known good die.
- ② Part number shown is for die in wafer. Contact factory for these other options.

Die Outline

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: [INCH].
- 3. LETTER DESIGNATION:

4. DIMENSIONAL TOLERANCES:

WIDTH < [.0250] TOLERANCE = +/- [.0005]
& > 0.635 TOLERANCE = +/- 0.025

LENGTH > [.0250] TOLERANCE = +/- [.0010]

OVERALL DIE: < 1.270 TOLERANCE = +/- 0.102

WIDTH < [.050] TOLERANCE = +/- [.004]

& > 1.270 TOLERANCE = +/- 0.203

LENGTH > [.050] TOLERANCE = +/- [.008]

BONDING PADS: < 0.635 TOLERANCE = +/- 0.013

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office.

Revision History

Date	Comments					
07/06/2015	 Updated IFX logo on all pages Removed Vceon @ I_C = 10A, V_{GE} = 15V on page1. 					
	Corrected Iges from +/-1.1uA to +/-200nA on page1.					

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/