

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

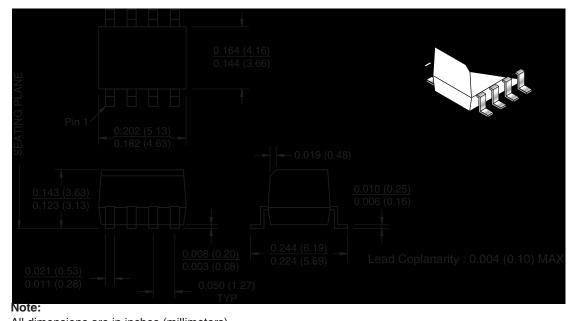
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

HCPL062N 3.3V Dual Channel High Speed-10 MBit/s Logic Gate Optocouplers

The HCPL062N optocouplers consist of an AlGaAs LED, optically coupled to a very high speed integrated photo-

detector logic gate consisting of bipolar transistors on a CMOS process for reduced power consumption. The output features an open collector, thereby permitting wired OR outputs. The devices are housed in a compact small-outline package. The coupled parameters are guaranteed over the temperature range of -40°C to +85°C. An internal noise shield and provides superior common mode rejection.

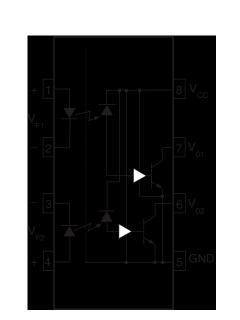
HCPL062N 3.3V Dual Channel High Speed-10 MBit/s Logic Gate **Optocouplers**


Description

Features

- Compact SO8 package
- Very high speed 10MBit/s
- Superior CMR 25kV/µs minimum (1,000 volts common mode)
- Logic gate output
- Wired OR-open collector
- Fixed threshold detector design minimizes thermal impact on switching times
- U.L. recognized (File # E90700)

Applications


- Ground loop elimination
- Field buses
- Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer-peripheral interface
- Instrumentation input/output isolation

All dimensions are in inches (millimeters)

Note:

Circuit Drawing⁽¹⁾

The V_{CC} supply to each optoisolator must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic
or solid tantalum capacitor with good high frequency characteristic and should be connected no further than 3mm
from the V_{CC} and GND pins of each device.

Truth Table (Positive Logic)

Input	Output
Н	L
L	Н

A $0.1 \mu F$ bypass capacitor must be connected between pins 8 and 5.

HCPL062N
3.3V
Dual
.062N 3.3V Dual Channel
High
gh Speed-10 MBit/s Logic Gate Opt
0 MBit/s
Logic
Gate
Optocoupler
lers

Absolute Maximum	Ratings	(No derating required up to 85°C)
------------------	---------	-----------------------------------

Symbol	Parameter	Value	Units
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +85	°C
EMITTER		łł	
١ _F	DC/Average Forward Input Current (each channel)	50	mA
V _R	Reverse Input Voltage (each channel)	5.0	V
PI	Power Dissipation	45	mW
DETECTOR		łł	
V _{CC} (1 minute max)	Supply Voltage	7.0	V
Ι _Ο	Output Current (each channel)	15	mA
V _O	Output Voltage (each channel)	7.0	V
Po	Collector Output Power Dissipation	85	mW

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
I _{FL}	Input Current, Low Level	0	250	μA
I _{FH}	Input Current, High Level	6.3 ⁽²⁾	15	mA
V _{CC}	Supply Voltage, Output	2.7	3.3	V
T _A	Operating Temperature	-40	+85	°C
N	Fan Out (TTL load)	_	5	TTL Loads
RL	Output Pull-up	330	4K	Ω

Note:

2. 6.3mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0mA or less

Electrical Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$ Unless otherwise specified.)

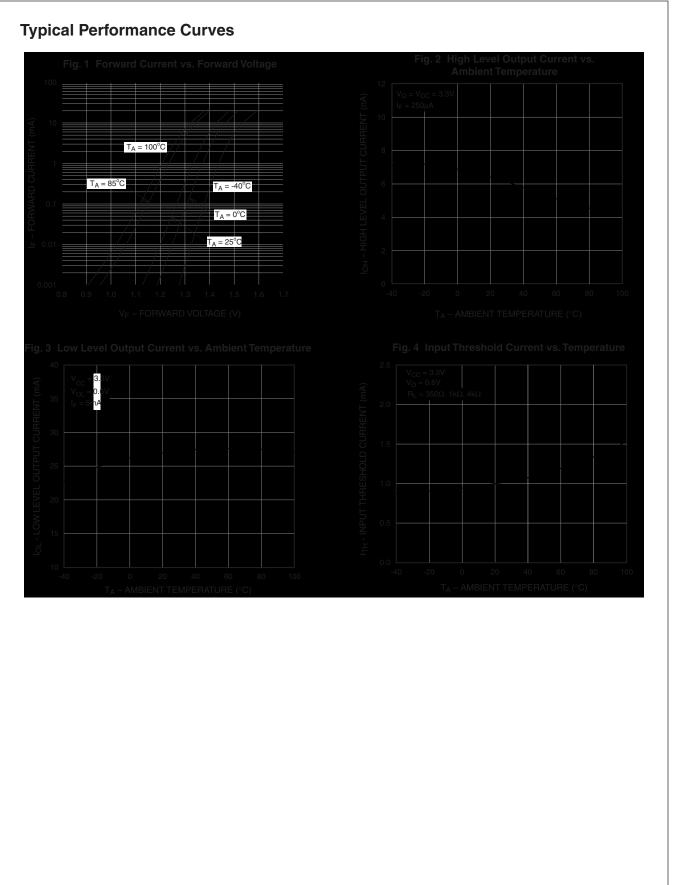
Individual Component Characteristics

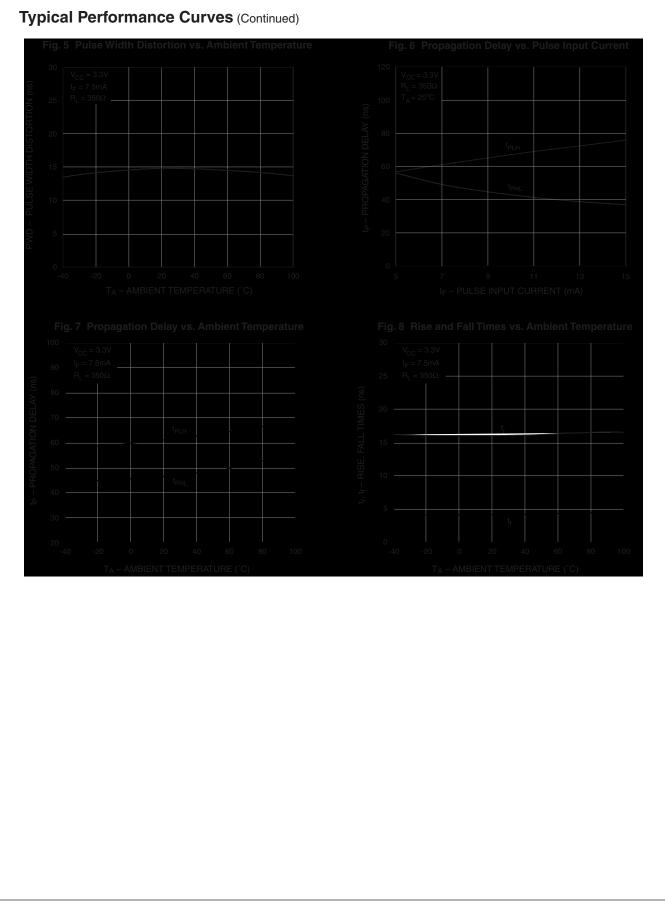
Symbol	Parameter	Test Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
EMITTER			•	•		
V _F	Input Forward Voltage	I _F = 10mA	-	-	1.8	V
		T _A =25°C	-	-	1.75	
B _{VR}	Input Reverse Breakdown Voltage	Ι _R = 10μΑ	5.0	-	_	V
$\Delta V_F / \Delta T_A$	Input Diode Temperature Coefficient	I _F = 10mA	-	-1.5	_	mV/°C
DETECTO	R	-				
I _{CCH}	High Level Supply Current	$I_{F} = 0mA, V_{CC} = 3.3V$	-	7.1	10	mA
I _{CCL}	Low Level Supply Current	I _F = 10mA, V _{CC} = 3.3V	_	6.7	15	mA

Switching Characteristics (T_A = -40°C to +85°C, V_{CC} = 3.3V, I_F = 7.5 mA Unless otherwise specified.)

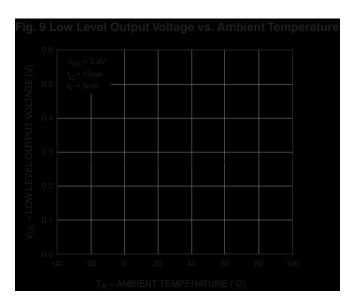
Symbol	AC Characteristics	Test Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
T _{PLH}	Propagation Delay Time to Output High Level	$R_L = 350\Omega, C_L = 15pF$ Note 4, Fig. 10	-	-	90	ns
T _{PHL}	Propagation Delay Time to Output Low Level	$R_L = 350\Omega$, $C_L = 15pF$ Note 5, Fig. 10	-	_	75	ns
IT _{PHL} –T _{PLH} I	Pulse Width Distortion	$R_L = 350\Omega$, $C_L = 15pF$ Fig. 10	-	-	25	ns
t _r	Output Rise Time (10–90%)	$R_L = 350\Omega, C_L = 15pF)$ Note 6, Fig. 10	-	16	_	ns
t _f	Output Fall Time (90–10%)	$R_L = 350\Omega$, $C_L = 15pF$ Note 7, Fig. 10	-	4	-	ns
ICM _H I	Common Mode Transient Immunity (at Output High Level)		25,000	_	_	V/µs
ICMLI	Common Mode Transient Immunity (at Output Low Level)	$\label{eq:RL} \begin{array}{l} R_{L} = 350\Omega, \ T_{A} = 25^\circ C, \ I_{F} = 7.5 mA, \\ V_{CC} = 3.3V, \ V_{O(Max.)} = 0.8V \\ IV_{CM}I = 1,000V \\ Notes \ 9, \ 11, \ Fig. \ 11 \end{array}$	25,000	_	_	V/µs

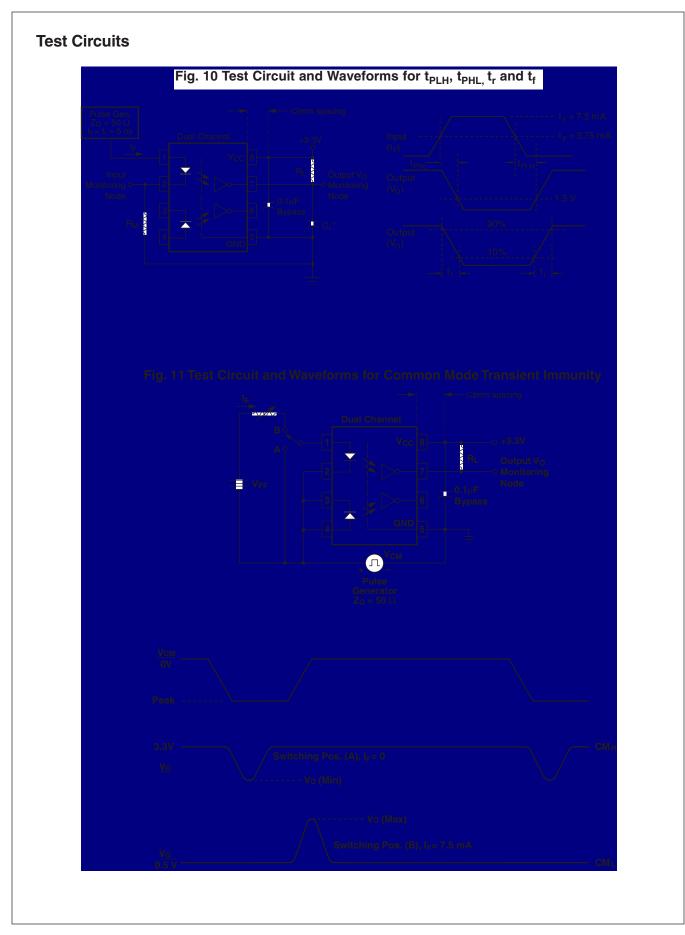
Transfer Characteristics	$T_A = -40^{\circ}C$ to $+85^{\circ}C$ Unless	otherwise specified.)
--------------------------	---	-----------------------

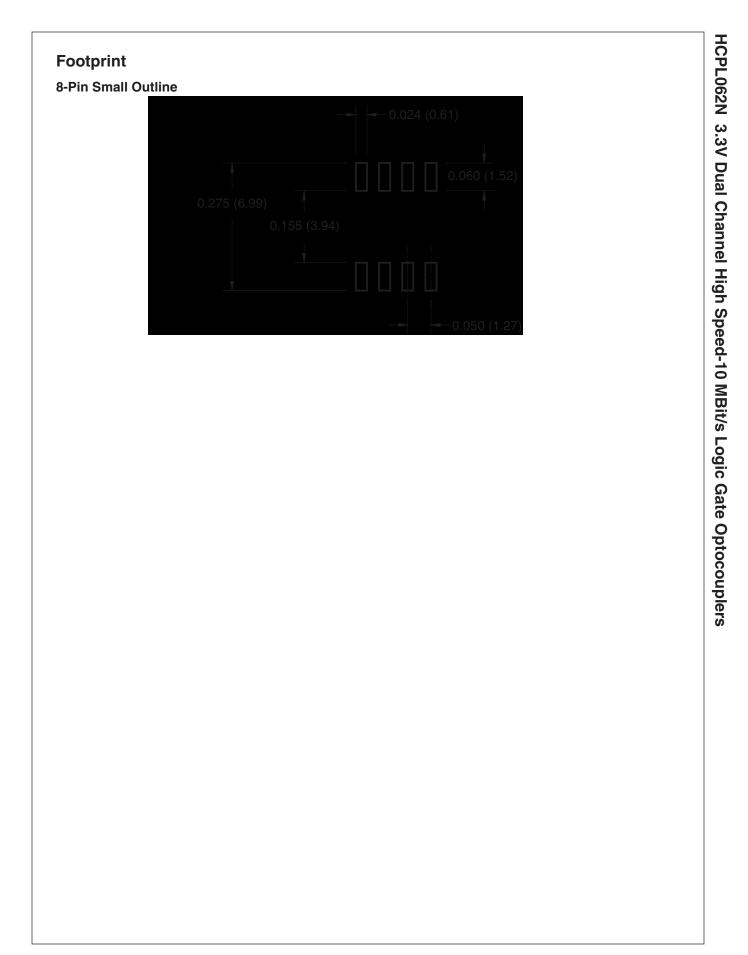

Symbol	DC Characteristics	Test Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
V _{OL}	Low Level Output Voltage	$V_{CC} = 3.3V$, $I_F = 5mA$, $I_{OL} = 13mA$	_	_	0.6	V
I _{FT}	Input Threshold Current	$V_{CC} = 3.3V, V_O = 0.6V, I_{OL} = 13mA$	_	_	5	mA

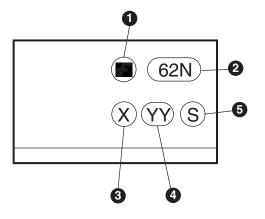

Isolation Characteristics (T_A = -40°C to +85°C Unless otherwise specified.)

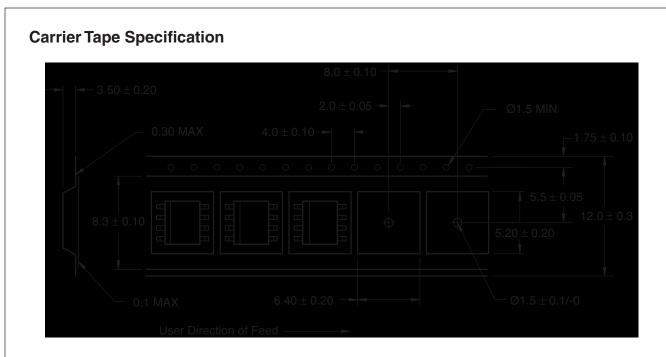
Symbol	Characteristics	Test Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
I _{I-O}	Input-Output Insulation Leakage Current	$\label{eq:relative} \begin{split} & \text{Relative humidity} = 45\% \\ & \text{T}_{\text{A}} = 25^{\circ}\text{C}, \ \text{t} = 5 \ \text{sec.} \\ & \text{V}_{\text{I-O}} = 3000 \ \text{VDC}, \ \text{Note 10} \end{split}$	_	_	1.0	μΑ
V _{ISO}	Withstand Insulation Test Voltage	$\label{eq:R_H} \begin{array}{l} R_{H} < 50\%, T_{A} = 25^{\circ}C \\ I_{I \text{-}O} \leq 2\mu\text{A}, t = 1 \text{min.}, \\ \text{Note 10} \end{array}$	2500	_	_	V _{RMS}
R _{I-O}	Resistance (Input to Output)	V _{I-O} = 500V, Note 10	-	10 ¹²	-	Ω
C _{I-O}	Capacitance (Input to Output)	f = 1MHz, Note 10	_	0.6	_	pF


Notes:

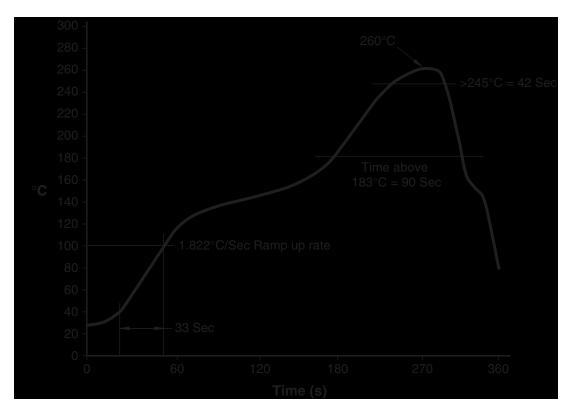

- 3. All typical values are at V_{CC} = 3.3V, T_A = 25°C unless otherwise specified.
- t_{PLH} Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.
- t_{PHL} Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.
- 6. t_r Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
- 7. t_f Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
- CM_H The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e., V_{OUT} > 2.0 V). Measured in volts per microsecond (V/μs).
- CM_L The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output state (i.e., V_{OUT} < 0.8 V). Measured in volts per microsecond (V/μs).
- 10. Device considered a two-terminal device: Pins 1,2,3 and 4 shorted together, and Pins 5,6,7 and 8 shorted together.
- 11. The power supply bypass capacitors must be no further than 3mm from the leads of the optocoupler. A low inductance ground plane width of with ≤ 5nHy of series lead inductance is required.

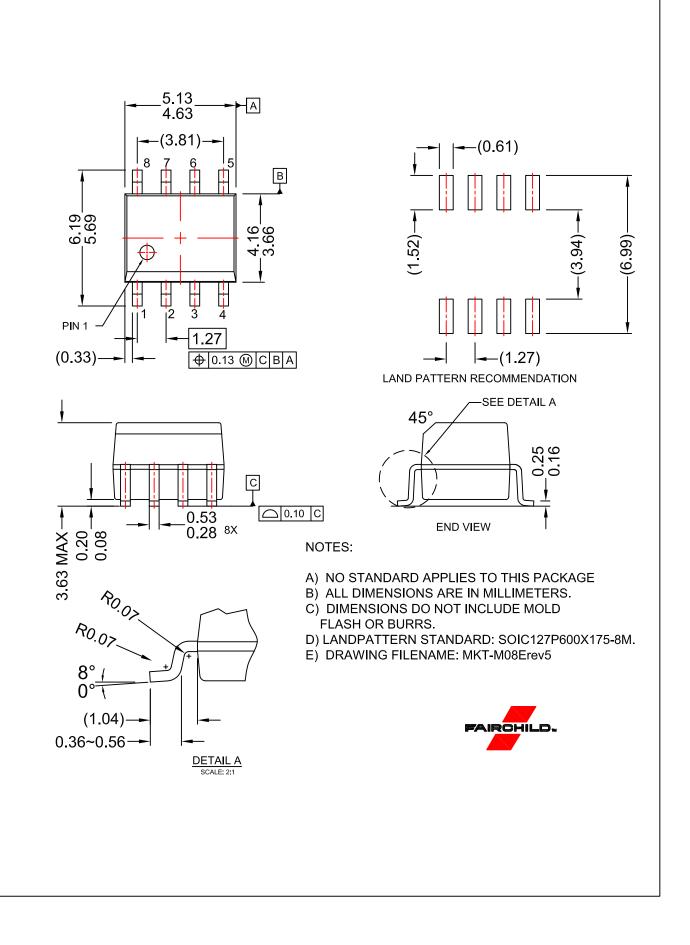



9


Ordering Information

Option	Order Entry Identifier	Description	
No Suffix	HCPL062N	Shipped in tubes (50 units per tube)	
R1	HCPL062NR1	Tape and Reel (500 units per reel)	
R2	HCPL062NR2	Tape and Reel (2500 units per reel)	


Marking Information


Definiti	Definitions		
1	Fairchild logo		
2	Device number		
3	One digit year code, e.g., '3'		
4	Two digit work week ranging from '01' to '53'		
5	Assembly package code		

Reflow Profile

HCPL062N 3.3V Dual Channel High Speed-10 MBit/s Logic Gate Optocouplers

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative