Effective April 2016 Supersedes May 2015

FPT1006 Dual conductor high current power inductors

Description

- Dual conductor, two-turn construction
- Magnetically shielded
- Inductance range from 340 nH to 580 nH
- Current range from 19 A to 40.5 A
- 10.5 mm x 8.8 mm footprint surface mount package in a 6.4 mm height
- Ferrite core material
- Halogen free, lead free, RoHS compliant

Applications

Compatible with Picor® Cool-Power®
ZVS Buck and Buck-Boost Regulator Families

Environmental Data

- Storage temperature range (component): -55 °C to +125 °C
- Operating temperature range (component): -55 °C to +125 °C (ambient plus self-temperature rise)
- Solder reflow temperature: J-STD-020D compliant

Picor® and Cool-Power® are trademarks of Vicor Corporation.

PCB trace

Product Specifications

Part Number⁵	OCL ¹ (nH) ±10%	Irms² (A)	l _{sat} ³ (A)	DCR⁴ (mΩ) maximum @ 20°C
FPT1006-340-R	340	19	40.5	1.0
FPT1006-400-R	400	19	35.5	1.0
FPT1006-500-R	500	19	27.5	1.0
FPT1006-580-R	580	19	23.0	1.0

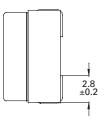
 Open Circuit Inductance (OCL) Test Parameters: 100 kHz, 0.1 Vrms, 0.0 Adc, +25 °C (Pins 4-2, short 1-3)
 I_{mm}: DC current for an approximate temperature rise of 40 °C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the

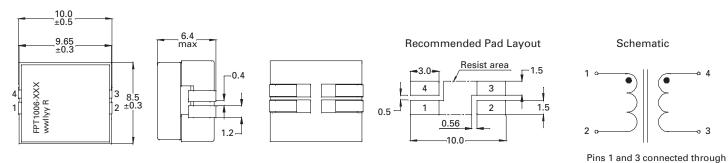
temperature rise. It is recommended that the temperature of the part not exceed +125 °C under worst case operating

4. DCR tested from pins (1-2) and (3-4)

5. Part Number Definition: FPT1006-xxx-R

FPT1006 = Product code and size

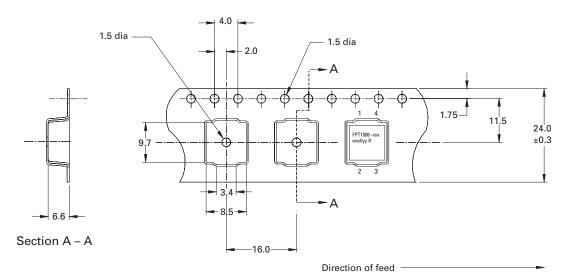

xxx = Inductance value in nH,


-R suffix = RoHS compliant

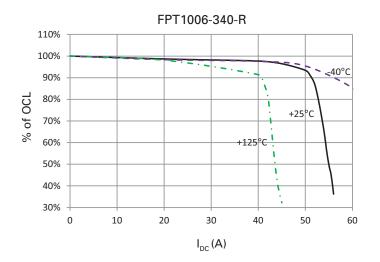
Note: Hipot: 250 Vdc minimum for 2 seconds, 1.0 mA pins (1-2) and pins (4-3) to core

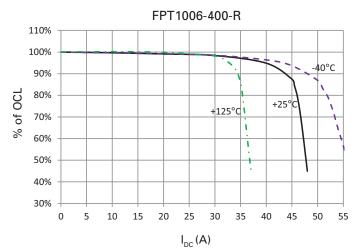
Dimensions (mm)

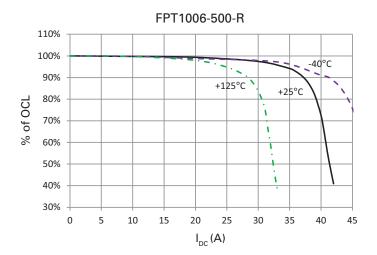
conditions verified in the end application. 3. $\rm I_{sat}$: Peak current for approximately 5% rolloff @ +25 °C


Part marking: FPT1006-xxx, xxx = inductance value in nH, wwllyy=date code, R=revision level Tolerances are ± 0.25 unless stated otherwise

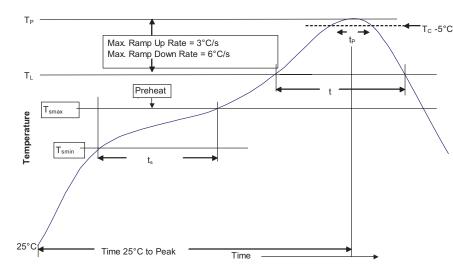
All mounting surfaces to be coplanar within 0.102 mm


FPT1006 Dual conductor high current power inductors


Packaging information (mm)


Supplied in tape and reel packaging, 620 parts per 13" diameter reel

Inductance characteristics



FPT1006-580-R 110% 100% -90% -40°C × % of OCL 80% +125°C +25°C 70% 60% 50% ٨ 40% ١ ٨ 30% 0 5 10 15 20 25 30 35 40 $I_{_{DC}}(A)$

Solder reflow profile

$-_{T_c - 5^{\circ}C}$ Table 1 - Standard SnPb Solder (T_c)

Package Thickness	Volume mm ³ <350	Volume mm³ ≥350
<2.5mm)	235°C	220°C
≥2.5mm	220°C	220°C

Table 2 - Lead (Pb) Free Solder (T_c)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350 - 2000	Volume mm ³ >2000
<1.6mm	260°C	260°C	260°C
1.6 – 2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C

Reference JDEC J-STD-020D

Profile Feature	Standard SnPb Solder	Lead (Pb) Free Solder	
Preheat and Soak • Temperature min. (T _{smin})	100°C	150°C	
• Temperature max. (T _{smax})	150°C	200°C	
• Time (T _{smin} to T _{smax}) (t _s)	60-120 Seconds	60-120 Seconds	
Average ramp up rate T _{smax} to T _p	3°C/ Second Max.	3°C/ Second Max.	
Liquidous temperature (TL) Time at liquidous (tL)	183°C 60-150 Seconds	217°C 60-150 Seconds	
Peak package body temperature (Tp)*	Table 1	Table 2	
Time $(t_p)^{**}$ within 5 °C of the specified classification temperature (T_c)	20 Seconds**	30 Seconds**	
Average ramp-down rate (Tp to T _{smax})	6°C/ Second Max.	6°C/ Second Max.	
Time 25°C to Peak Temperature	6 Minutes Max.	8 Minutes Max.	

* Tolerance for peak profile temperature (T_n) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States www.eaton.com/elx

© 2016 Eaton All Rights Reserved Printed in USA Publication No. 10389 BU-SB15162 April 2016

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

