
PHOTONIC DETECTORS INC.

Three Drive Emitter, Oximeter Component (660/905 nm) Type PDI-E834

FEATURES

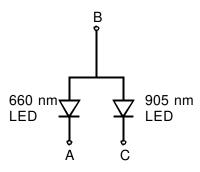
- Low cost
- 660 nm +/- 3 nm
- 3 drive line

DESCRIPTION: The **PDI-E834** is a three drive line dual emitter oximeter component. The 660 and 905 nm GaAlAs emitters are high power LPE grown. The metalized ceramic has clear epoxy encapsulation with top side solder pads. These components are ideal for O.E.M. and repair replacements of oximeter probe assemblies.

CONTACT A

APPLICATIONS

Metalized Ceramic Package


- Oximeter probes
- Finger clamps
- Reusable probes

ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	
Pd	Power Dissipation I _F =20 mA		250	mW	
I _{FP}	Continuous Forward Current		30	mA	
I FP	Peak Forward Current		200	mA	
VR	Reverse Voltage		4	V	
T _o &T _s	Storage & Operating Temp	-40	+80	۰C	
TS	Soldering Temperature*		240	°C	

^{*}For3 seconds max using a heat sink.

SCHEMATIC

ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	660 nm		905 nm			LINITO	
			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Po	Radiant Flux**	I _F = 20 mA	1.8	2.4		1.2	1.8		mW
Ιv	Luminous Intensity**	I _F = 20 mA	20	30					mcd
VF	Forward Voltage	I _F = 20 mA		1.8	2.4		1.2	1.5	V
V_{R}	Reverse breakdown	I _F = 10 // A	5			5			V
λp	Peak Wavelength	I _F = 20 mA	658	661	664	895	905	915	nm
Δλ	Spectral Bandwidth	I _F = 20 mA		25			50		nm
T _r	Rise Time	I _F = 20 mA		0.8			0.8		μS
Tr	Fall Time	I _F = 20 mA		0.8			0.8		μS

^{**} Bare chip measured packaged in a flat TO-18/TO-46 header without resin coating or cap.