

GaN Wideband 5 W CW / Pulsed Transistor in Plastic Package DC - 4.0 GHz

Rev. V2

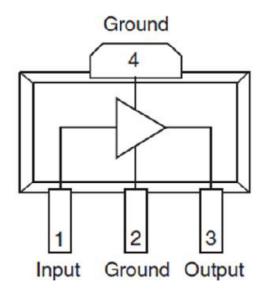
Features

- GaN on SiC D-Mode Transistor Technology
- Common-Source Configuration
- Unmatched, Coupled DC and RF
- · Ideal for Pulsed and CW Applications up to 50 V
- 50 V Typical Bias, Class AB
- Excellent Thermal Resistance
- Thermally-Enhanced Plastic SOT-89 Package
- MTTF = 600 years (T_J < 200°C)
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible
- MSL1

Description

The MAGX-000040-00500P is a GaN on SiC unmatched power device offering the widest RF frequency capability, most reliable high voltage operation, lowest overall transistor size, cost and weight in a "TRUE SMT" plastic package.

Use of an internal stress buffer technology allows reliable operation at junction temperatures up to 200°C. The small package size and excellent RF performance make it an ideal replacement for costly flanged or metal-backed module components.


Ordering Information¹

Part Number	Package
MAGX-000040-00500P	Bulk Packaging
MAGX-000040-0050TP	500 Piece Reel
MAGX-000040-SB2PPR	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin No.	Function		
1	V _{GG} /RF _{IN}		
2	GND		
3	V _{DD} /RF _{OUT}		
4	GND		

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macomtech.com for additional data sheets and product information.

1

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN Wideband 5 W CW / Pulsed Transistor in Plastic Package DC - 4.0 GHz

Rev. V2

Typical Narrowband RF Performance²: V_{DD} = 50 V, I_{DQ} = 17 mA, T_A = 25°C

Parameter	1 GHz	1.6 GHz	3.0 GHz	3.5 GHz	Units
Linear Gain	18	17	14	13.5	dB
Pulsed Peak Output Power (P3dB)	5.3	5.3	5.3	5.3	W
Pulsed Power Gain (P3dB)	15	14	11	10.5	dB
Drain Efficiency (P3dB)	61	55	53	50	%

^{2.} Device optimally matched in narrowband load-pull test system.

Electrical Specifications³: Freq. = 1.6 GHz, V_{DD} = 50 V, I_{DQ} = 17 mA, T_A = 25°C, Z_0 = 50 Ω

<u>-</u>	•								
Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units			
RF FUNCTIONAL TESTS: Pulse Width = 1 ms, 10% Duty Cycle									
Pulsed Peak Output Power	P _{IN} = 0.28 W Peak	P _{OUT}	4.5	5.3	-	Wpk			
Pulsed Power Gain	P _{IN} = 0.28 W Peak	G _P	12	13	-	dB			
Pulsed Drain Efficiency	P _{IN} = 0.28 W Peak	η _D	47	51.3	-	%			
Load Mismatch Stability	P _{IN} = 0.28 W Peak	VSWR-S	-	5:1	-	-			
Load Mismatch Tolerance	P _{IN} = 0.28 W Peak	VSWR-T	-	10:1	-	-			
RF FUNCTIONAL TESTS: CW									
CW Output Power	P3dB	P _{OUT}	-	4	-	W			

^{3.} Device measured in MACOM 1.4-1.6 GHz evaluation board. See tuning information on page 4.

Electrical Characteristics: $T_A = 25$ °C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
DC CHARACTERISTICS						
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 175 V	I _{DS}	-	-	200	μA
Gate Threshold Voltage	V _{DS} = 5 V, I _D = 0.6 mA	V _{GS (TH)}	-5	-3	-2	V
Forward Transconductance	V _{DS} = 5 V, I _D = 1500 mA	G _M	0.1	-	-	S
DYNAMIC CHARACTERISTICS					I	
Input Capacitance	V _{DS} = 0 V, V _{GS} = -8 V, F = 1 MHz	C _{ISS}	-	0.5	-	pF
Output Capacitance	V _{DS} = 50 V, V _{GS} = -8 V, F = 1 MHz	Coss	-	0.18	-	pF
Reverse Transfer Capacitance	V _{DS} = 50 V, V _{GS} = -8 V, F = 1 MHz	C _{RSS}	-	0.05	-	pF

²

North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

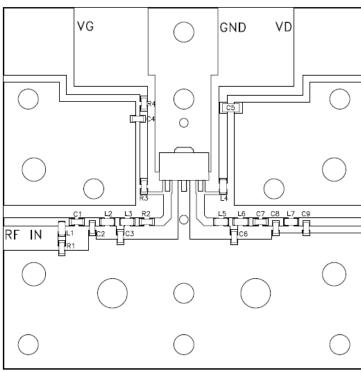
[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN Wideband 5 W CW / Pulsed Transistor in Plastic Package DC - 4.0 GHz

Rev. V2

Absolute Maximum Ratings 4,5,6,7,8

Parameter	Absolute Max.		
Input Power	30 dBm		
Drain Supply Voltage, V _{DD}	+65 V		
Gate Supply Voltage, V _{GG}	-8 V to 0 V		
Supply Current, I _{DD}	300 mA		
Power Dissipation, CW (85°C)	12 W		
Power Dissipation, Pulsed Mode (85°C)	31 W		
Junction Temperature ⁷	200°C		
Operating Temperature	-40°C to +95°C		
Storage Temperature	-65°C to +150°C		


- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 6. For saturated performance it is recommended that the sum of $(3 * V_{DD} + abs (V_{GG})) \le 175 \text{ V}$. 7. Operating at nominal conditions with $T_J \le 200^{\circ}\text{C}$ will ensure MTTF > 1 x 10⁶ hours. Junction temperature directly affects device MTTF and should be kept as low as possible to maximize lifetime.
- Junction Temperature $(T_J) = T_C + \Theta_{JC} * ((V * I) (P_{OUT} P_{IN})).$

Typical CW thermal resistance (Θ_{JC}) = 11.1°C/W. Typical transient thermal resistance (Θ_{JC}) = Θ_{JC} = 4.0°C/W (1 ms pulse, 10% duty cycle).

Rev. V2

L-Band Evaluation Board Details and Recommended Tuning Solutions

Parts measured on evaluation board (12-mil thick RO4003C). Electrical and thermal ground is provided using a copper-filled, via-hole array (not pictured), and evaluation board is mounted to a metal plate.

Matching is provided using lumped elements. Recommended tuning solutions for 2 frequency ranges are detailed in the parts list below.

Bias Sequencing

Turning the device ON

- Set V_G to the pinch-off value (V_P), typically -5 V.
- 2. Turn on V_D to nominal voltage (50 V).
- 3. Increase V_{GS} to desired quiescent current.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_G down to V_{P} .
- 3. Turn off V_D .
- 4. Turn off V_G.

Parts List

Part	Frequency = 1.0 - 1.2 GHz Frequency = 1.4 - 1.6 GHz			
C1	10 pF, 600L, ATC	10 pF, 600L, ATC		
C2	3.9 pF 0.5 pF, 600L, ATC ⁹	2.4 pF, 600L, ATC		
C3	6.8 pF 1 pF, 600L, ATC ⁹	5.6 pF, 600L, ATC		
C4	10 nF, 0402, Murata	10 nF, 0402, Murata		
C5	10 nF, 0603, Murata	10 nF, 0603, Murata		
C6	3.3 pF, 600L, ATC	2.4 pF, 600L, ATC		
C7	10 pF, 600L, ATC	10 pF, 600L, ATC		
C8	1.3 pF, 600L, ATC	1.3 pF, 600L, ATC		
C9	2 pF, 600L, ATC	1.6 pF, 600L, ATC		
L1	27 nH, 0402HP, Coilcraft	27 nH, 0402HP, Coilcraft		
L2	4.3 nH, 0402HP, Coilcraft	3.3 nH, 0402HP, Coilcraft		
L3	L3 3.3 nH, 0402HP, Coilcraft 1 nH, 0402HP,			
L4	30 nH, 0402HP, Coilcraft 12 nH, 0402HP, Coilcraft			
L5	16 nH, 0402HP, Coilcraft	8.2 nH, 0402HP, Coilcraft		
L6	8.2 nH, 0402HP, Coilcraft	3.9 nH, 0402HP, Coilcraft		
L7	2.7 nH, 0402HP, Coilcraft	3.3 nH, 0402HP, Coilcraft		
R1	49.9 Ω, 0402, Panasonic	49.9 Ω, 0402, Panasonic		
R2	5.1 Ω, 0402, Panasonic	5.1 Ω, 0402, Panasonic		
R3	200 Ω, 0402, Panasonic	200 Ω, 0402, Panasonic		
R4	1 kΩ, 0402, Panasonic	1 kΩ, 0402, Panasonic		

^{9.} Parallel combination of two capacitors.

Δ

North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN Wideband 5 W CW / Pulsed Transistor in Plastic Package DC - 4.0 GHz

Rev. V2

S-Band Evaluation Board Details and Recommended Tuning Solutions

Parts List, 2.9 - 3.3 GHz

<u> </u>	<u> </u>		
Part	Description		
C1	5.6 pF, 600L, ATC		
C2	5.6 pF, 600L, ATC		
C3	1 pF 0.02 pF, 600L, ATC ¹⁰		
C4	1 pF, 600L, ATC		
C5	10 nF, 0402, Murata		
C6	0.8 pF, 600L, ATC		
C7	1.5 pF, 600L, ATC		
C8	2.4 pF, 600L, ATC		
C9	1 nF, 0603, Murata		
C10	10 nF, 0603, Murata		
C11	1.1 pF, 600L, ATC		
C12	1.5 pF, 600L, ATC		
C13	1.6 pF, 600L, ATC		
C14	1.3 pF, 600L, ATC		
C15	0.6 pF, 600L, ATC		
C16	0.2 pF, 600L, ATC		
C17	0.6 pF, 600L, ATC		
C18	0.3 pF, 600L, ATC		
L1	56 nH, 0402HP, Coilcraft		
L2	12 nH, 0402HP, Coilcraft		
R1	100 Ω, 0402, Panasonic		
R2	1.2 kΩ, 0402, Panasonic		
R3	100 Ω, 0402, Panasonic		

10. Parallel combination of two capacitors.

Parts measured on evaluation board (12-mil thick RO4003C). Electrical and thermal ground is provided using a copper-filled, via-hole array (not pictured), and evaluation board is mounted to a metal plate.

Matching is provided using lumped elements. Recommended tuning solution for the 2.9-3.3 GHz frequency band is detailed in the parts list below.

Bias Sequencing

Turning the device ON

- Set V_G to the pinch-off value (V_P), typically -5 V.
- 2. Turn on V_D to nominal voltage (50 V).
- 3. Increase V_{GS} to desired quiescent current.
- 4. Apply RF power to desired level.

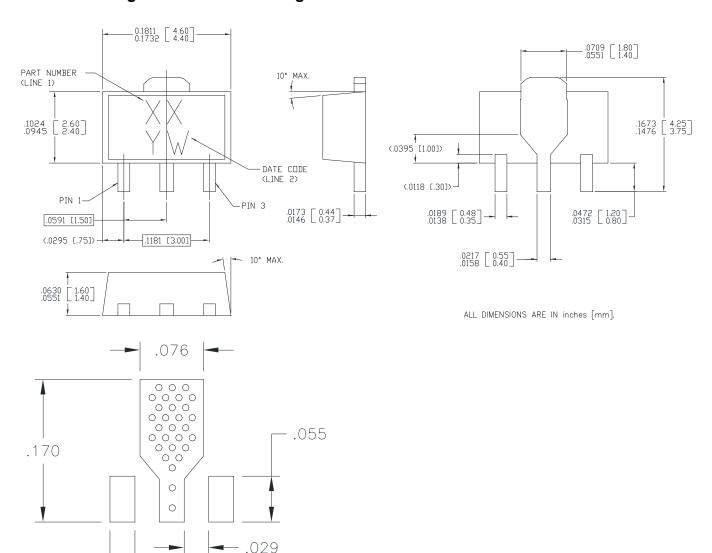
Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{G} down to V_{P}
- 3. Turn off V_D.
- 4. Turn off V_G.

5

North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300


Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN Wideband 5 W CW / Pulsed Transistor in Plastic Package DC - 4.0 GHz

Rev. V2

SOT-89 Package Outline and Landing Pattern^{11,12}

- Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Lead plating is 100% Sn matte.
- Landing pattern indicates dimensions of solder mask opening. Cu-filled via holes under the ground are typically used for optimal thermal performance. Recommended pattern: 8 mil diameter, 8 mil spacing.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Devices and Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A devices.

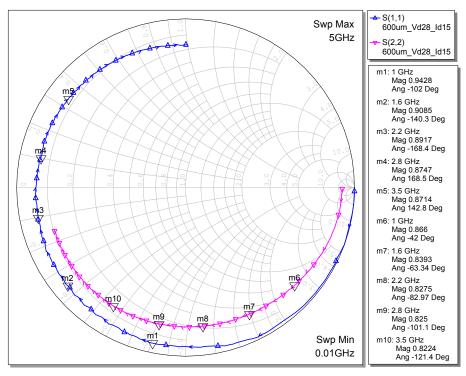
6

.030

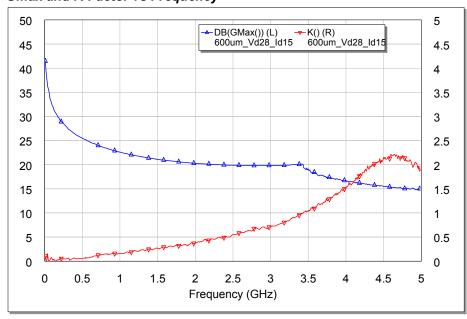
North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298



Rev. V2


Applications Section

S-Parameter Data: $T_A = 25$ °C, $V_{DD} = 28$ V, $I_{DQ} = 15$ mA

Device S11 and S22

Gmax and K-Factor vs Frequency

7

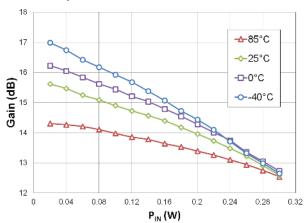
North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

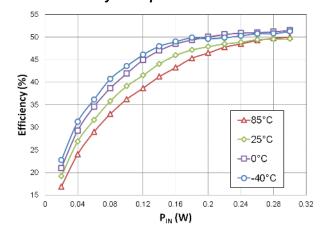
[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN Wideband 5 W CW / Pulsed Transistor in Plastic Package DC - 4.0 GHz

Rev. V2


Applications Section

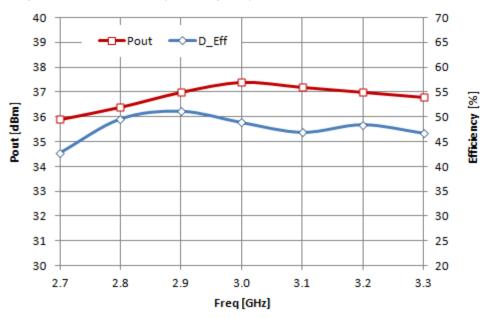
Typical Performance Curves (reference 1.4-1.6 GHz parts list): 1.6 GHz, 1 ms Pulse, 10% Duty Cycle, $V_{DD} = 50 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $Z_0 = 50 \Omega$


Output Power vs. Input Power

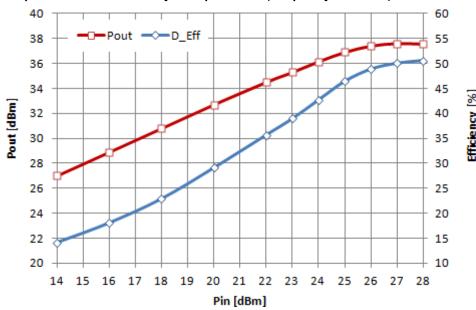
Gain vs. Input Power

Drain Efficiency vs. Input Power

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298


Rev. V2

Applications Section


Typical Performance Curves (reference 2.9-3.3 GHz parts list):

300 μ s Pulse, 10% Duty Cycle, V_{DD} = 50 V, T_A = 25°C, Z_0 = 50 Ω

Output Power and Efficiency vs. Frequency ($P_{IN} = 26 \text{ dBm}$)

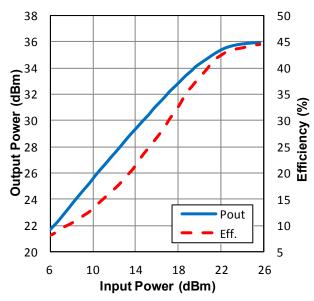
Output Power and Efficiency vs. Input Power (Frequency = 3.0 GHz)

9

North America Tel: 800.366.2266 / Fax: 978.366.2266

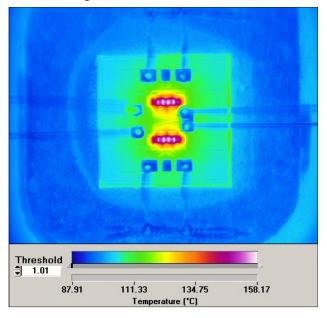
[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298


Rev. V2

Applications Section

Typical CW Performance:


Freq. = 2.7 GHz, V_{DD} = 50 V, T_A = 25°C, I_{DQ} = 13 mA, Load-Pull Test Fixture

Output Power and Efficiency vs. Input Power

Typical CW Thermal Performance: $V_{DD} = 50 \text{ V}$, $T_A = 85^{\circ}\text{C}$, $I_{DQ} = 13 \text{ mA}$

Thermal Image

P _{IN} (W)	P _{OUT} (W)	Eff. (%)	T _J (°C)	P _{DISS} (W)	R _{TH} (°C/W)
0.18	4.47	41.2	158	6.56	11.1

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298