

Overview

SEN-30103 is a quad (four) channel analog thermocouple amplifier based on the AD849x series of ICs from Analog Devices. Supply voltage is externally supplied to give the user control of the output and measurement range based on the type of device being used to read the output (keep reading for details on this). SEN-30103 is available for both J-type and K-type thermocouples. Sub-variants are also available to offset the output voltage to enable negative temperature readings to include the entire standard operating range of both J- and K-type thermocouples.

Features

- Output is 5mV/°C (0.005V / °C), with offset options available for negative temperature readings
- Available for J and K type thermocouples Cold-junction compensated
- Wide supply voltage range from 3V 18V, to be selected based on user needs
- SEN-30103-X1 options enable full negative range measurement range, dependent on positive supply voltage
- SEN-30103-X0 options handle positive temperature range only
- ±3°C initial accuracy
- Ttc = Vout / 0.005 °C (X0 options)
- Ttc = (Vout-1.245)/0.005 °C (X1 options)
- Screw terminals for thermocouple lead inputs
- Pin header matching Arduino R3 power and analog header layout for power and voltage outputs
- RoHS Compliant
- Small 2.54cm x 5.27cm (1.0" x 2.075") form factor
- 4 mounting holes sized for M3 or 4-40 screws
- SEN-30103 comes with screw terminals installed

Applications

- Automotive data acquisition (exhaust, coolant, brakes, etc)
- Industrial instrumentation
- Oven temperature measurements
- Home brew setups
- Celsius thermometer
- Full range of hobby projects
 - Arduino thermocouple interface with analog header
 - Build a reflow oven or kegerator!

Description

The SEN-30103-(K0/K1/J0/J1) lineup are analog thermocouple amplifier devices based on the AD849x (AD8494, AD8495) series from Analog Devices. These quad-channel thermocouple breakout boards convert very low voltage signals from K and J-type thermocouples to a highly-linear, 0.005V/°C output with 0V or 1.245V offset (0°C = 0V or 1.245V output) that is cold-junction compensated. The output signal can be read by a multitude of standard measurement devices, including digital multimeters, data acquisition systems or an analog input on an Arduino. Available devices

Table 1: SEN-30103 Standard Options

		Optimized Temperature Range		Negative
	TC	Ambient/PCB	Measurement (Hot)	Temperature
PWF Part No.	Туре	Temp	Junction	Handling
SEN-30103-J0	J	0°C to 50°C	Positive J type range	No
SEN-30103-J1	J	0°C to 50°C	Full J type range	Yes
SEN-30103-K0	К	0°C to 50°C	Positive K type range	No
SEN-30103-K1	К	0°C to 50°C	Full K type range	Yes
•				

sensors optimized for ambient environments from 25-100°C available upon reques

are listed in Table 1 below.

Analog filtering is included to remove unwanted EMI on the input stage of the conditioner.

Common mode filtering with a cutoff frequency of 1 kHz is included, as well as 50 Hz differential signal filtering. Included in the input stage is a 1 $M\Omega$ resistor that is connected to the negative input line. This results in open-input detection capability. When a thermocouple isn't present (or a wire has broken), the amplifier saturates its output to the supply voltage. This can be used to identify this type of fault.

Application & Guide

SEN-30103 is designed for flexible, low-cost integration into existing measurement systems. The simplest of these is the Arduino application. Specifically, SEN-30103 power supply and analog outputs are spaced to plug straight into Arduino supply and analog headers using a male pin header. It is also possible to use the SEN-30103 with a breadboard or point-to-point wiring.

As previously discussed, the standard output signal range is from OV to the input supply voltage, which is directly used to power the amplifiers. Table 2 below shows typical power supply and offset operations and their corresponding measurement range.

Table 2. SEN-SOLOS Typical Applications				
	Supply	Temperature		
	Voltage	Range		
SEN-30103-X0	3.3V	0°C - 660°C		
SEN-30103-X1	5V	MIN°C - 751°C		
SEN-30103-X0	5V	0°C - 1000°C		
SEN-30103-X0	10V	0°C - MAX°C		
SEN-30103-X1	10V	-MIN°C - MAX°C		

Note 1: MIN temperature range of K-type TC = \sim -260°C, J-type TC = \sim -180°C Note 2: MAX temperature range of K-type TC = \sim 1380°C, J-type TC = \sim 1200°C

Ranges shown were chosen to represent typical 3.3V, 5V, and 10V measurement systems. It can be seen that even a 3.3V system can be used for measurements typical of ovens and many industrial processes. Typical 5V systems (such as an Arduino) can be used to achieve a 0°C - 1000°C measurement range, which covers most

automotive temperature needs (coolant, oil, exhaust). Offset devices should be selected any time negative temperatures need to be measured. A 10V measurement system would be required to read the full thermocouple range of either a J-type or K-type thermocouple.

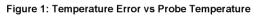
Performance Characteristics

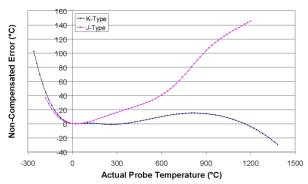
The SEN-30103-XX devices are designed to output a highly linear signal based on an input from J-Type or K-Type thermocouples. This is accomplished by the integration of an operational amplifier and cold-junction compensation within the AD849x series ICs. As a result, the output of the SEN-30103-XX can be approximated as linear over a specified window, with degradation of the estimate outside of this window. See Table 3 for an overview of linearization based on thermocouple type.

Table 3: Sensor Temperature Linearization			
		Measurement (hot) Junction	
		Temperature Ranges	
	Thermocouple	+/- 2°C linearity,	Correction tables
PWF Part No.	Туре	no correction	applied
SEN-30103-J0	J	0°C to 95°C	Full J type range
SEN-30103-J1	J	-35°C to 95°C	Full J type range
SEN-30103-K0	К	0°C to 400°C	Full K type range
SEN-30103-K1	К	-25°C to 400°C	Full K type range

Keeping this in mind, the end user may either accept the nonlinearity, or apply one of two methods to handle the output voltage from the sensors. The method chosen will depend on linearity accuracy requirements as well as the required operational range of the input signal. Absolute accuracy is separate from the linearity accuracy, which can be found in Tables 5.

In one application example, if a +/- 2°C linearity accuracy is acceptable and the sensing application will stay within the windows shown in Table 3, temperature conversion is straightforward and calculated based on output voltage with the formulas:


Ttc (X1 variants) = ((Vout - 1.245V) / 0.005)°C



Ttc (X0 variants) = Vout / 0.005°C

These formulas apply for both J-Type and Ktype sensors. They are also fitting for applications with less stringent linearity accuracy requirements and wider operating ranges. See Figure 1 for temperature error across the input temperature operating range due to thermocouple nonlinearity.

If linearity accuracy provided by the formula in the previous example is not acceptable, there is an alternative method that corrects for linearity error. Specifically, correction tables can be used to correct the high-order non-linearity across the sensor's operating range. See Tables 5 and 6 for this information for the X0 and X1 variants, respectively (calculated based on Analog Devices AN-1087). This correction is directly related to the high-order response characteristics of the respective thermocouples. It can be noted that K-type thermocouples exhibit far greater linearity in the positive temperature range than J-type thermocouples, with less than 20°C temperature error beyond 1200°C even without correction.

Common Issues & Resolution

• Thermocouple measurement is noisy or inconsistent due

Table 4: Operating Characteristics

Parameter	Rating
Supply Voltage (operational)	2.7V to 36V
Supply Voltage (maximum)	36V
Reverse Supply Protection	none
Output Short-to-Ground Duration	Indefinite
Absolute Accuracy (initial)	3°C
Optimal Operating Temperature	0°C to 50°C
Safe Operating Temperature	-25°C to 85°C
Storage Temperature	-40°C to 125°C

- Most often seen with grounded thermocouples causing commonmode voltage handling issues
- Switch to ungrounded thermocouples, if possible
- "Paint" bare thermocouple ends with varnish to electrically insulate
- Consider <u>FDQ-10001</u> if grounded thermocouples are required
- Measurement system lacks resolution needed
- Oversample and average results
- Consider using digital thermocouple interfaces, outlined below
- <u>Contact us</u> for application guidance
- Power supply needs are causing issues
- Consider <u>SEN-30101</u> or <u>FDQ-10001</u> with integrated power supplies

Ordering Options & Related Parts

SEN-30103-J0: Quad J-type (AD8494) Breakout, no offset SEN-30103-K0: Quad K-type (AD8495) Breakout, no offset SEN-30103-J1: Quad J-type (AD8494) Breakout, 1.245V offset, negative temp SEN-30103-K1: Quad K-type (AD8495) Breakout, 1.245V offset, negative temp SEN-30101: Quad analog thermocouple conditioner, integrated power supply FDQ-10001: Eight-channel, highly integrated analog thermocouple module

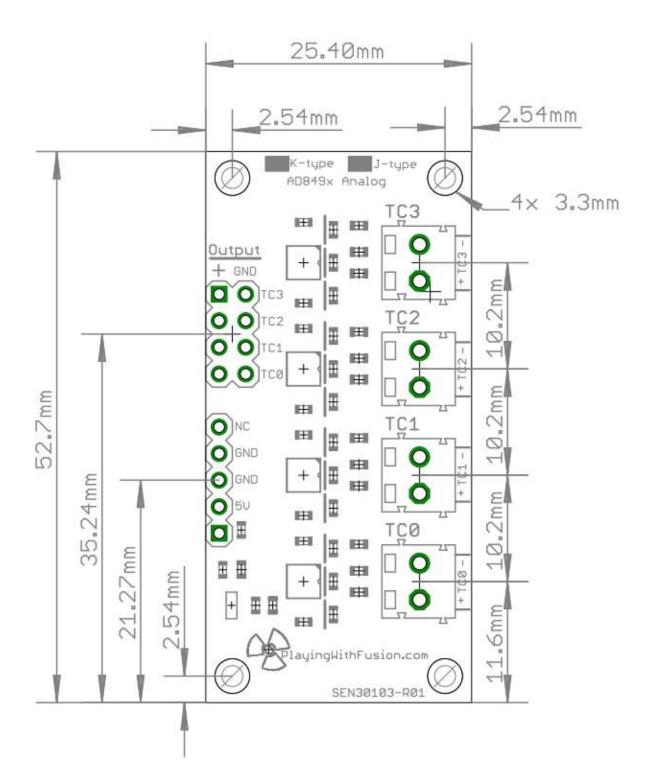
<u>SEN-30007</u>: Quad MAX31856 thermocouple interface, SPI, Arduino Shield <u>SEN-30008</u>: Quad MAX31856 thermocouple breakout, SPI <u>SEN-30011</u>: Quad MCP9601, Qwiic I2C interface, multiple thermocouple options <u>SEN-30202</u>: Dual MAX31865 RTD, SPI

	Ideal Output (V)	Actual Output (V)	
Measurement Junction	SEN30103-K0	SEN30103-K0	SEN301013-J0
Temperature (°C)	SEN30103-J0	K-Type	J-Type
0	0	0.003	0.002
20	0.1	0.1	0.1
25	0.125	0.125	0.125
40	0.2	0.2	0.201
60	0.3	0.301	0.303
80	0.4	0.402	0.406
100	0.5	0.504	0.511
120	0.6	0.605	0.617
140	0.7	0.705	0.723
160	0.8	0.803	0.829
180	0.9	0.901	0.937
200	1	0.999	1.044
220	1.1	1.097	1.151
240	1.2	1.196	1.259
260	1.3	1.295	1.366
280	1.4	1.396	1.473
300	1.5	1.497	1.58
320	1.6	1.599	1.687
340	1.7	1.701	1.794
360	1.8	1.803	1.901
380	1.9	1.906	2.008
400	2	2.01	2.114
420	2.1	2.113	2.221
440	2.2	2.217	2.328
460	2.3	2.321	2.435
480	2.4	2.425	2.542
500	2.5	2.529	2.65
520	2.6	2.634	2.759
540	2.7	2.738	2.868
560	2.8	2.843	2.979
580	2.9	2.947	3.09
600	3	3.051	3.203
620	3.1	3.155	3.316
640	3.2	3.259	3.431
660	3.3	3.362	3.548
680	3.4	3.465	3.666
700	3.5	3.568	3.786
720	3.6	3.67	3.906
740	3.7	3.772	4.029
760	3.8	3.874	4.152
780	3.9	3.975	4.276
800	4	4.076	4.401

Table 5: Correction Tables for SEN-30103-X0 (no offset) Thermocouple Sensors

	Ideal Output (V)	Actual Output (V)	
Measurement Junction	SEN30103-K0	SEN30103-K0	SEN301013-J0
Temperature (°C)	SEN30103-J0	K-Type	J-Type
820	4.1	4.176	4.526
840	4.2	4.275	4.65
860	4.3	4.374	4.774
880	4.4	4.473	4.897
900	4.5	4.571	5.018
920	4.6	4.669	5.138
940	4.7	4.766	5.257
960	4.8	4.863	5.374
980	4.9	4.959	5.49
1000	5	5.055	5.606
1020	5.1	5.15	5.72
1040	5.2	5.245	5.833
1060	5.3	5.339	5.946
1080	5.4	5.432	6.058
1100	5.5	5.525	6.17
1120	5.6	5.617	6.282
1140	5.7	5.709	6.394
1160	5.8	5.8	6.505
1180	5.9	5.891	6.616
1200	6	5.98	6.727
1220	6.1	6.069	
1240	6.2	6.158	
1260	6.3	6.245	
1280	6.4	6.332	
1300	6.5	6.418	
1320	6.6	6.503	
1340	6.7	6.587	
1360	6.8	6.671	
1380	6.9	6.754	

	Ideal Output (V)	Actual Output (V)		
Measurement Junction	SEN30103-K1	SEN30103-K1	SEN301013-J1	
Temperature (°C)	SEN30103-J1	K-Type	J-Type	
-260	-0.055	0.459		
-240	0.045	0.471		
-220	0.145	0.494		
-200	0.245	0.526		
-180	0.345	0.568	0.531	
-160	0.445	0.618	0.587	
-140	0.545	0.676	0.651	
-120	0.645	0.741	0.722	
-100	0.745	0.813	0.799	
-80	0.845	0.89	0.88	
-60	0.945	0.973	0.967	
-40	1.045	1.061	1.057	
-20	1.145	1.152	1.15	
0	1.245	1.248	1.247	
20	1.345	1.345	1.345	
25	1.37	1.37	1.37	
40	1.445	1.445	1.446	
60	1.545	1.546	1.548	
80	1.645	1.647	1.651	
100	1.745	1.749	1.756	
120	1.845	1.85	1.862	
140	1.945	1.95	1.968	
160	2.045	2.048	2.074	
180	2.145	2.146	2.182	
200	2.245	2.244	2.289	
220	2.345	2.342	2.396	
240	2.445	2.441	2.504	
260	2.545	2.54	2.611	
280	2.645	2.641	2.718	
300	2.745	2.742	2.825	
320	2.845	2.844	2.932	
340	2.945	2.946	3.039	
360	3.045	3.048	3.146	
380	3.145	3.151	3.253	
400	3.245	3.255	3.359	
420	3.345	3.358	3.466	
440	3.445	3.462	3.573	
460	3.545	3.566	3.68	
480	3.645	3.67	3.787	
500	3.745	3.774	3.895	
520	3.845	3.879	4.004	
540	3.945	3.983	4.113	


Table 6: Correction Tables for SEN-30103-X1 (offset) Thermocouple Sensors

	Ideal Output (V)		Actual Output (V)	
Measurement Junction	SEN30103-K1	SEN30103-K1	SEN301013-J1	
Temperature (°C)	SEN30103-J1	K-Type	J-Type	
560	4.045	4.088	4.224	
580	4.145	4.192	4.335	
600	4.245	4.296	4.448	
620	4.345	4.4	4.561	
640	4.445	4.504	4.676	
660	4.545	4.607	4.793	
680	4.645	4.71	4.911	
700	4.745	4.813	5.031	
720	4.845	4.915	5.151	
740	4.945	5.017	5.274	
760	5.045	5.119	5.397	
780	5.145	5.22	5.521	
800	5.245	5.321	5.646	
820	5.345	5.421	5.771	
840	5.445	5.52	5.895	
860	5.545	5.619	6.019	
880	5.645	5.718	6.142	
900	5.745	5.816	6.263	
920	5.845	5.914	6.383	
940	5.945	6.011	6.502	
960	6.045	6.108	6.619	
980	6.145	6.204	6.735	
1000	6.245	6.3	6.851	
1020	6.345	6.395	6.965	
1040	6.445	6.49	7.078	
1060	6.545	6.584	7.191	
1080	6.645	6.677	7.303	
1100	6.745	6.77	7.415	
1120	6.845	6.862	7.527	
1140	6.945	6.954	7.639	
1160	7.045	7.045	7.75	
1180	7.145	7.136	7.861	
1200	7.245	7.225	7.972	
1220	7.345	7.314		
1240	7.445	7.403		
1260	7.545	7.49		
1280	7.645	7.577		
1300	7.745	7.663		
1320	7.845	7.748		
1340	7.945	7.832		
1360	8.045	7.916		
1380	8.145	7.999		

Appendix 1: Mechanical Drawing



9

Appendix 2: Application Information: Arduino Header Connections

SEN-30103-K0 show. Connections valid for all standard parts.